
Shi JC, Cai XQ, Zheng WL et al. Reliability and incentive of performance assessment for decentralized clouds. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 37(5): 1176–1199 Sept. 2022. DOI 10.1007/s11390-022-2120-y

Reliability and Incentive of Performance Assessment for
Decentralized Clouds

Jiu-Chen Shi1 (), Student Member, CCF, IEEE, Xiao-Qing Cai1 (), Student Member, CCF, IEEE
Wen-Li Zheng1 (), Senior Member, CCF, Member, IEEE
Quan Chen1 ( ), Senior Member, CCF, Member, IEEE
De-Ze Zeng2 (), Senior Member, CCF, Member, IEEE, Tatsuhiro Tsuchiya3, Member, IEEE, and
Min-Yi Guo1,∗ (), Fellow, CCF, IEEE

1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2School of Computer Science, China University of Geosciences, Wuhan 430074, China
3Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan

E-mail: {shijiuchen, cai-xq}@sjtu.edu.cn; {zheng-wl, chen-quan}@cs.sjtu.edu.cn; deze@cug.edu.cn
E-mail: t-tutiya@ist.osaka-u.ac.jp; guo-my@cs.sjtu.edu.cn

Received December 28, 2021; accepted July 21, 2022.

Abstract Decentralized cloud platforms have emerged as a promising paradigm to exploit the idle computing resources

across the Internet to catch up with the ever-increasing cloud computing demands. As any user or enterprise can be

the cloud provider in the decentralized cloud, the performance assessment of the heterogeneous computing resources is of

vital significance. However, with the consideration of the untrustworthiness of the participants and the lack of unified

performance assessment metric, the performance monitoring reliability and the incentive for cloud providers to offer real

and stable performance together constitute the computational performance assessment problem in the decentralized cloud.

In this paper, we present a robust performance assessment solution RODE to solve this problem. RODE mainly consists of

a performance monitoring mechanism and an assessment of the claimed performance (AoCP) mechanism. The performance

monitoring mechanism first generates reliable and verifiable performance monitoring results for the workloads executed by

untrusted cloud providers. Based on the performance monitoring results, the AoCP mechanism forms a unified performance

assessment metric to incentivize cloud providers to offer performance as claimed. Via extensive experiments, we show RODE

can accurately monitor the performance of cloud providers on the premise of reliability, and incentivize cloud providers to

honestly present the performance information and maintain the performance stability.

Keywords decentralized cloud computing, robust performance assessment, trusted execution environment (TEE)

1 Introduction

Cloud computing, as a typical resource sharing

solution, delivers various forms of computing ser-

vices across the Internet, while four cloud giants

(i.e., AWS, Microsoft, Alibaba, and Google) dominate

77.3% of the market share 1○. Moreover, it is discov-

ered that as much as 85% of the server capacity is

underutilized [1], especially for small or medium en-

terprises and cloud providers. Recently, lots of de-

centralized cloud platforms have been implemented,

e.g., Akash 2○, BonusCloud 3○, Golem 4○, iExec 5○, and

Regular Paper

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61832006 and 61872240.
∗Corresponding Author
1○Gartner says worldwide IaaS public cloud services market grew 37.3% in 2019. https://www.gartner.com/en/newsroom/press-

releases/2020-08-10-gartner-says-worldwide-iaas-public-cloud-services-market-grew-37-point-3-percent-in-2019, May 2022.
2○https://akash-web-prod.s3.amazonaws.com/uploads/2020/03/akash-position.pdf, May 2022.
3○https://bonuscloud.io/whitepaper/BonusCloud%20White%20Paper%202018%20Version%201.0.pdf, May 2022.
4○https://whitepaper.io/document/21/golem-whitepaper, May 2022.
5○https://iex.ec/wp-content/uploads/pdf/iExec-WPv3.0-English.pdf, May 2022.

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-022-2120-y

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1177

SONM 6○, which have the potential to utilize idle com-

puting power across the Internet, no matter personal

computers or enterprise servers. With the same net-

work architecture (i.e., peer-to-peer) and the same pur-

pose (i.e., combining idle resources) of grid computing

or peer-to-peer computing, these decentralized cloud

platforms are enhanced by exploring the newly emerged

Blockchain technology [2] to form the reliable supervi-

sion of computing power trading. The integration of the

Blockchain technology can further guarantee the sys-

tem’s robustness in a decentralized and de-trust mode.

Computational performance is a critical metric to

assess the quality of cloud computing [3, 4], and is even

more important in decentralized cloud platforms. Since

any user or enterprise can be the cloud provider, com-

paring the performance between heterogeneous com-

puting resources is essential. Cloud providers can label

their servers with respective performance information,

e.g., the results of executing some widely-used bench-

marks. Usually, a user needs to pay more for renting

a cloud server with better performance, and hence ex-

pects the actual performance to be as good as claimed.

However, the cloud providers in the decentralized

cloud may not always keep the performance at the

claimed value in practice, mainly due to the following

two reasons. Firstly, resource sharing and contention

can affect the performance stability of the claimed

performance [5, 6]. Secondly, if the cloud providers par-

ticipating in the decentralized cloud have no require-

ment of trust or reputation, a malicious cloud provider

can intentionally claim inveracious performance infor-

mation to gain more profit [7, 8]. These two facts lead

to the untrustworthiness of the claimed performance,

and thus the monitoring of real performance becomes

indispensable in the decentralized cloud.

To address such an untrustworthiness problem, sev-

eral methods have been proposed to assess the real

performance of untrustworthy cloud providers. As

shown in the left part of Fig.1, a user who does not

trust the cloud providers can monitor the performance

through his/her workload executions and rate the cloud

providers onto the Blockchain. However, the user’s

results are hard to be comprehensive and may not

be trusted by other users and cloud providers. Some

third parties can benchmark the performance of cloud

providers (e.g., SPEC rating) and then record the re-

sults onto the Blockchain, as shown in the right part

of Fig. 1. This method is not transparent and re-

quires strong trust, while the cloud providers can eas-

ily conduct malicious behaviors, e.g., tampering with

the benchmarking profiles or offering better VMs for

benchmarking. In the decentralized cloud, although the

performance information (users’ rates or benchmark re-

sults) recorded on the Blockchain is traceable and non-

tampered, there is no guarantee on its quality. The

performance information does not come from a reliable

Performance

List

Third Party
Not Transparent

Malicious Behaviors

Blockchain (Traceable and Non-Tampered)

User

Monitored Data

Not Comprehensive

Not Trusted

Unreliable Performance Data Source

Cloud Providers

Workloads

Rates

Benchmarks

Results

Fig.1. Existing methods of acquiring performance information in decentralized clouds. Both of the methods have problems with
reliability.

6○https://docs.sonm.com/, May 2022.

1178 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

data source, because none of the cloud providers, users,

or third parties can provide reliable performance in-

formation. Therefore, acquiring reliable performance

monitoring results in the decentralized cloud is still

challenging.

Meanwhile, performance assessment based on per-

formance monitoring results is also of vital significance

to the incentive mechanism of the decentralized cloud.

Typically, cloud providers with better performance

shall get more revenue by providing higher Quality-of-

Service (QoS) to the users. Existing peer-to-peer com-

puting or decentralized computing proposes economy-

based [9, 10] and reciprocity-based [11–13] incentive mech-

anisms, and includes various theories and algorithms,

e.g., game theory [14, 15] and double auction [16]. These

incentive mechanisms utilize the reputation or contri-

bution (e.g., the historical ratio of successful interac-

tions) of the peers as the input, to avoid the malicious

behaviors of peer-to-peer systems. However, these in-

centive mechanisms do not consider performance assess-

ment as an incentive factor. Moreover, existing incen-

tive mechanisms cannot be directly applied due to the

unreliable input (cloud providers’ performance moni-

toring results) and the lack of suitable performance as-

sessment metric for the incentive mechanisms. Since

there is no robust and adaptive incentive mechanism for

performance assessment, the participants in the decen-

tralized cloud may claim inveracious performance in-

formation and have no motivation to maintain the per-

formance stability with respect to their claimed perfor-

mance. This may even raise the phenomenon that bad

money drives out the good. Therefore, a unified per-

formance assessment metric, which is generated based

on reliable performance monitoring results, is needed

to fairly and accurately assess the cloud providers, and

shall also be taken into account in the cloud provider

selection decision from users.

In this paper, we present a robust performance as-

sessment solution RODE. We first propose a perfor-

mance monitoring mechanism to generate reliable and

verifiable performance results for workload executions

on the untrusted cloud providers. A delicate sampling

solution empowered by Intel Software Guard Exten-

sions (SGX) technology [17, 18] is proposed to realize reli-

able performance monitoring in the specific trusted exe-

cution environment (TEE) [19], making the performance

data source reliable. We use two common characteris-

tics of Intel SGX existing in most TEEs on various CPU

processor architectures (e.g., Intel TDX [20], AMD SEV-

SNP [21], and ARM CCA [22]), to enable that our mech-

anism can be easily adapted to many different types of

servers in the decentralized cloud. We focus on batch

workloads with the Infrastructure as a Service (IaaS)

mode and cloud providers’ computational performance.

In decentralized clouds, the claimed hardware configu-

ration of providers may be different. Given a user’s

workload, since we cannot obtain the user’s workload

corresponding execution time (end-to-end delay) that

matches the given claimed hardware resources, we can-

not tell whether the resources are truly provisioned as

the cloud providers claimed. Therefore, rather than

the execution time, we mainly use the micro bench-

marks inserted in the users’ workloads as samplings, to

obtain the performance monitoring results. Based on

the reliable performance results, we further propose the

assessment of the claimed performance (AoCP) mech-

anism to form a unified performance assessment metric

among cloud providers, and then use this metric in the

cloud provider selection decision for users. In this way,

the cloud providers are incentivized to offer real and

stable performance.

We evaluate the performance monitoring mecha-

nism to show that it can sensitively detect whether the

workload execution meets the claimed performance or

not, with negligible overhead. We also validate its prac-

ticability under dynamic resource sharing of the cloud

environment. In addition, we emulate how users choose

cloud providers according to the dynamic performance

assessment with AoCP, and show that RODE can in-

centivize cloud providers to honestly present the perfor-

mance information and maintain the performance sta-

bility at runtime. Specifically, the major contributions

of this paper are as follows.

• We design a performance monitoring mechanism,

as a trusted method to monitor the workload execution

performance on untrusted cloud providers, to generate

reliable and verifiable performance results. It offloads

the workloads and performance monitoring into un-

trusted memory and only uses SGX to hide the criti-

cal part of the performance monitoring, to avoid SGX’s

limitations and improve the performance monitoring ef-

fect.

• We design the AoCP mechanism, as a perfor-

mance assessment method for cloud servers based on

reliable performance monitoring results, to incentivize

cloud providers to offer real and stable performance.

• We implement the SGX-based performance mon-

itoring mechanism and emulate the AoCP mechanism.

The experimental results show the feasibility of trusted

performance monitoring and the effectiveness of AoCP.

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1179

The rest of the paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 introduces the

background and motivation. Section 4 describes the de-

sign of RODE. Section 5 is the evaluation. Section 6

provides the discussions. Section 7 concludes this work.

2 Related Work

The performance or QoS information is critical for

comparing the cloud providers with heterogeneous com-

puting power in the decentralized cloud. Most existing

decentralized cloud platforms use simple benchmark-

ing (e.g., iExec and SONM) or performance monitoring

and pressure testing (e.g., BonusCloud) to monitor the

performance of untrusted cloud providers [8]. However,

without any reliability guarantee, a malicious cloud

provider can easily report inveracious performance to

others, e.g., tampering with the performance bench-

marking profiles.

Some existing studies consider the cloud service se-

lection, composition, and recommendation, and acquire

or monitor the performance or QoS information in diffe-

rent ways. The widely-used centralized schemes [23–25]

support obtaining the information from trusted third

parties or the cloud providers themselves, which re-

quires strong trust, while it is totally possible for a

third party and a cloud provider to operate in collu-

sion. Some studies present how to estimate the per-

formance by modeling with historical data, related at-

tributes, or context information, from the user side or

the cloud provider side [26–30]. However, neither side can

ensure the reliability of the data and models used for

estimation, and hence neither can convince the other

when their results are inconsistent. Some other stu-

dies adopt the smart contract [31] technology to mon-

itor the response time of latency-critical services and

record it on the Blockchain [32, 33]. However, for most

batch workloads, more performance related data (e.g.,

CPU cores or memory bandwidth usage), not only the

response time, are needed to accurately assess the per-

formance, which cannot be monitored by the smart con-

tract. Therefore, existing studies cannot verify the re-

liability of the performance data due to the untrusted

execution of performance monitoring.

Meanwhile, the emergence of the trusted execution

environment (TEE) [19] brings opportunities for reliable

performance monitoring on the untrusted hosts. Intel

SGX [17, 18] is one of the technologies providing a trusted

execution environment [19], with which a user’s applica-

tion program can execute in the secured memory called

enclave to ensure the correctness and integrity of exe-

cution. The code, input data, and user-supplied data

can be measured and included in a CPU-signed report

provided by Intel. The user can use the CPU-signed re-

port to issue a verification request to Intel Attestation

Service (IAS) for remote attestation, which can con-

duct authentication of the remote enclave of the remote

cloud provider. The SGX’s major functionalities with

secured memory protection and remote attestation also

exist in most of the other TEEs on various CPU proces-

sors, e.g., Intel TDX [20], AMD SEV-SNP [21], and ARM

CCA [22]. With the rapid development of Intel SGX

technology, OVERSEE [7] proposes an SGX-based per-

formance monitoring mechanism. However, it requires

the entire workload and the performance monitoring

executing inside the SGX enclave. This brings several

limitations to the workload (e.g., memory space, IO in-

structions, and system calls), resulting in severe moni-

toring errors and overhead.

Except for the performance monitoring reliability,

the performance assessment is also of vital significance

for incentivizing cloud providers to offer good perfor-

mance. Existing incentive mechanisms of peer-to-peer

or decentralized cloud platforms can be classified into

two categories, i.e., economy-based and reciprocity-

based. Economy-based mechanisms [9, 10] price shared

entities (e.g., computing resources) according to par-

ticipants’ provided service performance or the supply

and demand situation. On the one hand, the par-

ticipant who can provide better quality of experience

(QoE) is allowed to offer higher prices of shared enti-

ties to gain more profits [9]. On the other hand, some

mechanisms use various game theories [14, 15] or double

auction techniques [16] to control shared entities’ prices

and bid to achieve a balanced supply and demand.

Reciprocity-based mechanisms [11–13] enable a partici-

pant to get equivalent rewards according to the partic-

ipant’s contribution to the system. For instance, the

participant who contributes more hot data for service

caching can get a higher reputation, and in return, the

participant can obtain a better quality of service from

the edge server [11]. The above two categories utilize the

price, contribution, or reputation of participants as the

input, to avoid the malicious behaviors of the peer-to-

peer system. However, existing incentive mechanisms

fail to take the performance assessment into consider-

ation. Moreover, they cannot be directly applied due

to the unreliable input (cloud provider’s performance

monitoring results) and no suitable performance assess-

ment metric for the incentive mechanisms. Since there

1180 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

are no robust and adaptive incentive mechanisms for

performance assessment, the cloud providers have no

motivation to offer high performance for users.

Compared with existing schemes, RODE not only

exploits Intel SGX to guarantee the reliability of per-

formance data source while eliminating the poor ef-

fect caused by Intel SGX by the delicate design, but

also takes advantage of the performance assessment at-

tribute to incentivize cloud providers to offer real and

stable performance, so as to form a robust performance

assessment solution for the decentralized clouds.

3 Background and Motivation

In this section, we introduce the decentralized cloud

platforms and the motivation behind the design of

RODE.

3.1 Decentralized Cloud Platforms

The four cloud giants, i.e., AWS, Microsoft, Al-

ibaba, and Google, take up most of the cloud market

share, but their infrastructures require a huge amount

of cost. Small and medium cloud providers, enterprises,

or personal computers across the network have a large

number of idle computing resources, but their compet-

itiveness is insufficient, due to the lack of reputation,

investment, and so on. To avoid vendor lock-in, re-

duce the cloud service cost, and efficiently utilize the

idle resources across the network, many decentralized

cloud platforms are emerging, e.g., Akash, BonusCloud,

Golem, iExec, and SONM. Expect for building on the

peer-to-peer network to effectively aggregate idle re-

sources worldwide like grid computing and peer-to-peer

computing, these platforms enable reliable computing

power trading by utilizing the Blockchain technology to

transparently provide cloud services to users.

The operation flow of a typical decentralized cloud

platform is shown in Fig. 2. A cloud user first sub-

mits the workload requests to the transaction man-

ager, which then broadcasts a corresponding transac-

tion (steps 1 and 2). After this transaction is processed

and recorded on the Blockchain, the scheduler can ob-

tain the user’s workload requirements from this trans-

action, e.g., the required number of CPU cores, memory

capacity, or IO bandwidth (step 3). The scheduler then

chooses the most appropriate cloud provider according

to the selection policy, which considers three aspects: 1)

resources and price the cloud providers can provide, 2)

the cloud providers’ performance from the performance

collector, and 3) the cloud providers’ reputation level

from the incentive system (step 4). Thereafter, the se-

lected cloud provider executes the workload and sends

the results to the result verifier (steps 5 and 6). If the

verification is failed, the workload request will be sent

back to the scheduler and be re-scheduled. In this case,

the reputation of the corresponding cloud provider de-

creases. Otherwise, the transaction manager will send

transactions to pay for the cloud provider and the rep-

utation value increases (steps 7 and 8).

The result verification realized by the result verifier

plays a critical role in decentralized cloud platforms.

Since the cloud providers in the decentralized cloud

Transaction

Manager

Scheduler
1. Requests

3. Requirements

4. Chosen

5.Execution

7. Increase

Performance

Collector

Claimed

Performance

8. Payment

Cloud

User

Cloud

Providers2. Transactions

Incentive

System

R
ep

ut
at

io
n

Decrease

Result

Verifier
Yes

No

Resources and Price

6. Execution Results

Fig.2. Simplified operation flow of a decentralized cloud. The parts in red have the problems we study, i.e., the reliability of performance
monitoring (Subsection 3.2.1 and Subsection 3.2.2) and the incentives of performance assessment (Subsection 3.2.3).

Blockchain (Smart Contracts)

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1181

platform have a low barrier to entry, the trustworthi-

ness of them cannot be guaranteed. The execution re-

sults from the cloud providers may be inveracious. To

solve this problem, Golem, iExec, and SONM use log

analysis, correctness checking, and redundant comput-

ing methods. Furthermore, these platforms will take

the number of correctly completed workloads as the

main factor to rate the reputation of cloud providers,

and take the reputation into account in the incentive

system to avoid malicious behaviors. However, these

methods cannot completely guarantee the correctness

and also cost a huge amount of extra computing power.

In addition, iExec and Golem attempt to integrate In-

tel SGX technology to protect the integrity of the code

and guarantee the execution results 7○ 8○.

In this paper, we focus on the performance assess-

ment problems in decentralized cloud platforms, which

exist in the performance collector and the incentive sys-

tem of Fig.2.

3.2 Performance Assessment Problems

This subsection analyzes two key problems, i.e., the

reliability of performance monitoring (Subsection 3.2.1

and Subsection 3.2.2) and the incentives considering

performance assessment (Subsection 3.2.3), which exist

in the performance collector and the incentive system

of Fig.2, respectively.

3.2.1 Unreliable and Unverifiable Performance
Monitoring

In the decentralized cloud, each cloud provider may

have multiple types of cloud servers with different per-

formance scores. A cloud provider can measure the

performance by executing public benchmarks and con-

verting the benchmark results into performance scores,

which are then used to label the cloud server as claimed

performance. The user selects the cloud server based

on the claimed performance and expects it can be

achieved for the workloads submitted. However, the ac-

tual performance may not always be consistent with the

claimed value due to the resource sharing of the cloud

servers and the cloud providers’ malicious behaviors to

gain more profit. For example, an enterprise server as

the cloud provider may get and claim its memory per-

formance when the server is idle, but perform its own

big data processing business at the same time when

executing users’ workloads obtained from the decen-

tralized cloud, which can cause the contention of mem-

ory bandwidth. Another example, a malicious cloud

provider may claim its server has the CPU float calcu-

lation performance of 5 GFLOPS, but only uses lower

CPU performance to perform users’ workloads, which

can not only achieve a high service sale price but also

save server energy. These situations all lead to the un-

trustworthiness of the claimed performance.

To address this problem, usually a user can monitor

the user workload’s performance via system calls (e.g.,

similar to what the Linux command top does), which

are conducted on the cloud servers. Unfortunately, an

untrusted cloud provider can manipulate the system

calls to forge the performance information, leading to

unreliable performance monitoring results. Meanwhile,

it is also difficult for the cloud providers to prove the

validity of their performance results.

For the performance collector in Fig.2, some cloud

platforms directly adopt the claimed performance from

the cloud providers. With respect to the trustworthi-

ness issue, some platforms suggest benchmarking meth-

ods (e.g., iExec and SONM), or using performance mon-

itor plugins and pressure test methods (e.g., Bonus-

Cloud) to actively monitor the performance [8]. These

methods can all be easily disrupted by malicious beha-

viors and hard to be validated, and thus lack of relia-

bility and verifiability.

3.2.2 High Error Rate and Overhead of Existing
SGX-Based Solution

Intel SGX can isolate sensitive codes and data in

the protected memory, called enclave, and provide a

CPU-signed report for the code running in the enclave.

Hence, OVERSEE [7] proposes a state-of-the-art SGX-

based performance monitoring mechanism, which ad-

dresses the mutual distrust problem in performance

monitoring to guarantee the reliability and verifiabil-

ity. To this end, OVERSEE is designed to execute

the entire workload inside SGX’s enclave, and evenly

insert performance samplings with micro benchmarks

into the workloads. OVERSEE calculates the number

of benchmarks executed per second by looping to get

SGX’s trusted timestamps (with one-second granular-

ity) in each sampling, and uses all samplings’ average

value to represent the workload’s performance.

However, executing the entire workload inside SGX

causes non-negligible impacts on the workload’s perfor-

mance, and brings many limitations, e.g., it is hard to

7○https://docs.iex.ec/for-developers/confidential-computing/intel-sgx-technology, May 2022.
8○https://blog.golemproject.net/golems-essential-guide-to-graphene/, May 2022.

1182 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

support IO instructions and system calls. Moreover,

we discover that OVERSEE is not accurate when there

exists resource contention with other co-located work-

loads on the same server. We reproduce OVERSEE

and test a CPU-intensive workload π calculation and

a memory-intensive workload BubbleSort in six diffe-

rent interference scenarios, respectively. We insert float

calculation benchmark into π calculation, and array

copy (1D) benchmark into BubbleSort. The experi-

ments are conducted on a PC server to be consistent

with OVERSEE [7]. The hardware and software speci-

fications, workloads and benchmarks, and interference

scenarios are shown in Table 1, Table 2, and Table 3

respectively.

Fig.3 reports our experimental results on both er-

rors and overhead. We can see that both the error rate

and the overhead of OVERSEE are high. The average

error rate is 24.8% and the average overhead is 91.8%

for π calculation, while, the average error is 26.7% and

the average overhead is 132.2% for BubbleSort. We at-

tribute this phenomenon to the following two reasons.

The first one is the inaccurate timestamps OVERSEE

uses. The granularity of SGX’s trusted timestamps

is 1 s, and the time to obtain SGX’s timestamp dif-

fers greatly under different resource contention from

the co-located workloads. In our experiments, the time

to obtain an SGX’s timestamp spans from 13.3 ms to

23.4 ms. Such an inaccurate timestamp incurs a large

error in OVERSEE. The second one is the SGX’s over-

head. OVERSEE executes workloads in SGX inher-

ently, which incurs too much inevitable SGX’s overhead

(e.g., limitations on memory space with 128 MB) and

performance sampling overhead (1 s–2 s for each sam-

pling).

Table 1. Hardware and Software Specifications

Server Type Specification

PC server Intel Core i7-6700 CPU @ 3.4 GHZ,

4 hyper-threaded cores,

16 GB DDR4 2 133 MHz,

Ubuntu 20.04.2 LTS,

Docker version 19.03.12, tozd/sgx 9○

High-performance Intel Xeon Gold 5218 CPU @ 2.30 GHz,

server 32 hyper-threaded cores,

256 GB DDR4 2 133 MT/s,

Ubuntu 18.04.5 LTS,

Docker version 19.03.12

Table 2. Workloads and Benchmarks in Testbed Experiments

Workload Name Specification

CPU-intensive π calculation 45 000 digits

workload SVM train Mnist-str4 dataset

Memory-intensive BubbleSort 1 MB data

workload WordCount 162 061 lines

CPU-intensive Float calculation 1.5 × 107 interactions

benchmark of calculations (plus,

subtract, multiply,

and divide)

Memory-intensive Array copy (1D) Memory copy of two

benchmark one-dimensional

arrays with 24 MB

Array copy (2D) Memory copy by

columns of two

two-dimensional

arrays with 8 MB

Table 3. Interference Scenarios for Comparison with Baseline

Scenario π Calculation BubbleSort

(CPU-Intensive) (Memory-Intensive)

1 2 CNN+2 RL+1 K -means Redis (1 port)

2 3 CNN+3 RL+2 K -means Memcached (2 ports)

3 3 CNN+3 RL+3 K -means Redis (1 port)+

Memcached (1 port)

4 4 CNN+4 RL+3 K -means Redis (1 port)+

Memcached (2 ports)

5 5 CNN+4 RL+4 K -means Redis (2 ports)+

Memcached (1 port)

6 5 CNN+5 RL+5 K -means Redis (2 ports)+

Memcached (2 ports)

Note: CNN is short for convolutional neural network training.
RL is short for reinforcement learning. Redis workloads are gene-

rated by using the load generation tool Redis-benchmark 10○ with
the parameters of c = 200 and d = 1 000. Memcached workloads

are generated by using the load generation tool Memaslap 11○
with the parameters of T = 3, c = 810, X = 10 000, w = 100 000,
and d = 1 000.

As can be seen, the existing state-of-the-art SGX-

based solution is not accurate enough and also with

non-negligible overhead. Nevertheless, we shall also

admit its potential in guaranteeing the reliability of

performance monitoring. We are therefore motivated

to overcome the limitations of SGX-based solution to

present a new design with low error rate and overhead,

with reliability guaranteed at the same time.

9○https://hub.docker.com/r/tozd/sgx, May 2022.
10○https://redis.io/docs/reference/optimization/benchmarks/, July 2022.
11○http://docs.libmemcached.org/bin/memaslap.html, July 2022.

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1183

2.1%

59.1%

24.8%

0

16

32

48

64

80

1 2 3 4 5 6

E
rr

o
r

R
a
te

 (
%

)

Serial Number of Interference Scenarios

Average 111.1%

57.1%

91.8%

0

28

56

84

112

140

0 1 2 3 4 5 6

O
v
e
rh

e
a
d
 (

%
)

Serial Number of Interference Scenarios

1 2 3 4 5 6

Serial Number of Interference Scenarios

0 1 2 3 4 5 6

Serial Number of Interference Scenarios

Average

110.9%

166.7%

132.2%

0

40

80

120

160

200

O
v
e
rh

e
a
d
 (

%
)

Average

6.9%

39.8%

26.7%

0

10

20

30

40

50

E
rr

o
r

R
a
te

 (
%

)

Average

(a)

(b)

Fig.3. OVERSEE’s error rate and overhead. (a) π calculation (CPU-intensive). (b) BubbleSort (memory-intensive).

3.2.3 No Incentive Mechanisms Considering
Performance Assessment

For the incentive system in Fig.2, it is expected that

an incentive mechanism that can encourage more cloud

providers to participate in, and avoid the phenomenon

that the bad money drives out the good. Existing

cloud platforms usually use the number of historical

workloads correctly executed as a metric for reputa-

tion rating (e.g., Golem, iExec, and SONM) and asset

mortgage (e.g., Akash). Other peer-to-peer computing

systems also apply economy-based [9, 10] or reciprocity-

based [11–13] methods through integrating the game

theory [14, 15] and the auction algorithm [16]. They use

the reputation or contribution of the participants as the

input, to incentivize the participants to conduct good

behaviours.

However, none of them considers computation per-

formance assessment in the incentive mechanisms.

Moreover, directly applying existing incentive mecha-

nisms is infeasible, because there are no reliable and

verifiable performance monitoring results to be the in-

put, and no suitable performance assessment metric de-

signed for the performance incentive mechanisms. How-

ever, obviously the extent that a cloud provider can

meet its claimed performance when executing users’

workloads shall be an important factor in evaluating its

reputation. Without an appropriate incentive mecha-

nism with reliable performance assessment metrics, a

cloud provider may have no motivation to provide high

performance when executing users’ workloads, i.e., not

maintaining the stability relative to cloud providers’

claimed performance, and may even intentionally claim

higher performance beyond their capability to gain

more users’ workloads for higher revenue. In detail,

a malicious cloud provider can make more users’ work-

loads be allocated to it by claiming high performance,

but offer low performance to save costs when executing

the workloads to gain more profits.

To address this problem, we propose a unified per-

formance assessment metric for cloud providers in the

decentralized cloud, and then take this metric into the

1184 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

cloud provider selection decision, to incentivize cloud

providers to offer their real performance as claimed.

4 Design of RODE

RODE is designed to first generate reliable and ver-

ifiable performance monitoring results. Based on the

performance monitoring results, a unified performance

assessment metric is formed for cloud provider selec-

tion. In this section, we first introduce the performance

monitoring mechanism to solve the problems in Subsec-

tion 3.2.1 and Subsection 3.2.2, and then the assessment

of the claimed performance mechanism (AoCP) to solve

the problem in Subsection 3.2.3.

4.1 Performance Monitoring Mechanism

With the consideration of RODE’s generality, we

integrate the two common characteristics which are

included in most of the TEEs to design our mecha-

nism, i.e., secured memory protection and remote at-

testation. In this subsection, we use Intel SGX (one

of the commonly-used TEEs nowadays) to illustrate

our design. As stated in Subsection 3.2.2, to avoid

the limitations of SGX and improve the efficiency of

performance monitoring while guaranteeing reliability

and verifiability, instead of putting all the workloads

in SGX as OVERSEE does, we offload them outside

SGX, and only make use of SGX to hide the critical

part of the performance monitoring process. In this

way, the cloud provider cannot distinguish the perfor-

mance monitoring workload from the normal workload.

Once the workload is executed, the cloud provider can

use the SGX’s report to prove the validity of perfor-

mance results.

As shown in Fig.4, our mechanism supports piece-

wise performance monitoring. As different code frag-

ments of a workload may have heterogeneous resource

consumption characteristics, using different monitoring

methods based on the dominant resource shall be pre-

ferred. We divide the workload into normal, operation-

predictable, and operation-unpredictable code frag-

ments, and classify the monitoring methods accord-

ingly. We first generate a random key pair (PK, SK)

in advance. PK encrypts each code fragment’s flag,

which is an identifier of the code fragment, and em-

beds the encrypted flag into the workload code. SK

(hardcoded into the enclave) decrypts the encrypted

User's Workload

Operation-Unpredictable Code
Fragment with Performance Monitoring

Result Generation
(Monitoring Enclave Destroyed)

Workload Initialization
(Monitoring Enclave Initialized)

Normal Code Fragment

Normal Code Fragment

Normal Code Fragment

(HardCodenor, tsnor)

Operation-Predictable Code Fragment with
Performance Monitoring

Multiple (HardCodeopu, tsopu)s
Multiple (HardCodenor, tsnor)s

Application Developer Made
(PK, SK)

Input Encrypted Data

↼HardCodeopp↪ tsopp↽

start_tsin↪ start_tsout

Performance Results

HardCodenor=Enc(PK, flagnor)

HardCodeopp=Enc(PK, flagopp)

HardCodeopu=Enc(PK, flagopu)

(b)(a)

Fig.4. Overview of the performance monitoring mechanism. (a) Execution process of a user’s workload. (b) Generated data within
the execution process.

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1185

performance monitoring the data passed into the en-

clave. For each code fragment, we record the hard

code that identifies its content and its end timestamp.

For example, for a normal code fragment, we record

HardCodenor=Enc(PK, flagnor) and the end times-

tamp tsnor. Enc() represents the encryption function,

and flagnor is the plaintext of HardCodenor, which can

identify that this fragment is a normal code fragment.

The purpose of encrypting each code fragment’s flag is

to avoid malicious cloud providers recognizing and tam-

pering with the performance monitoring timestamps

generated in the untrusted memory, and the detailed

analysis is in Subsection 4.1.5.

We present the four key components of the perfor-

mance monitoring mechanism and discuss its reliability

as follows.

4.1.1 Workload Initialization

It is responsible for determining the workload’s start

timestamp reliably. SGX can obtain the trusted sys-

tem timestamp inside the enclave with the granularity

of 1 s, which is not fine enough. Therefore, RODE gets

the start timestamp outside the enclave with millisec-

ond granularity and uses the trusted timestamp of Intel

SGX as a reference to guarantee its reliability.

A monitoring enclave, as an enclave whose internal

code is specifically used for performance monitoring,

is initialized during workload initialization. After the

initialization, RODE enters the monitoring enclave to

generate a trusted start timestamp. The monitoring

enclave records the timestamp start tsin in the trusted

memory, and then returns to the outside part, who can

then generate a timestamp start tsout with millisecond

granularity in the untrusted memory. Since start tsout
is obtained right after start tsin, we can guarantee the

reliability of start tsout by checking whether the diffe-

rence between the two timestamps is within 1 s (i.e.,

the granularity of start tsin) or not.

4.1.2 Operation-Predictable Code Fragment with
Performance Monitoring

The dominant resource consumption of some code

fragments (e.g., a fragment that reads or writes a

dataset with a known size) can be predicted accurately

(or known exactly). We regard them as operation-

predictable code fragments, for which we only need to

get the execution time as the metric for performance

monitoring. Therefore, for an operation-predictable

code fragment, we get the start timestamp (the end

timestamp of the previous code fragment), the end

timestamp tsopp, and the hard code of this fragment

HardCodeopp, which includes the encryption of mark-

ing read or write accesses and the dataset size.

4.1.3 Operation-Unpredictable Code Fragment with
Performance Monitoring

For most code fragments, their dominant resource

consumption cannot be predicted accurately, e.g.,

CPU-intensive or memory-intensive code fragments.

Because of the uncertain numbers of CPU cycles and

memory accesses, we cannot make precise performance

monitoring with only the execution time. Therefore, we

design the performance sampling solution. It requires

application developers to insert public micro bench-

marks according to their applications’ resource con-

sumption characteristics. A developer can select the

micro benchmark, which takes a small amount of time

(e.g., tens of milliseconds), for each code fragment, and

can also decide the frequency of performance samplings.

RODE records the execution time values of all inserted

benchmarks and uses the average value of them as the

metric to determine the code fragment’s performance.

As shown in Fig.5, for each performance sampling,

it first generates a random number rand num to make

the occurrence of this sampling to be probabilistic. This

step aims at making the sampling positions and the

times random no matter when the code fragment is

Yes No

Operation-Unpredictable
Code Fragment

Performance Sampling 1

Normal Code Fragment

Normal Code Fragment

Performance Sampling i

Performance Sampling n

① Generate a Random Number rand_num

② Satisfy the Sampling Condition?

③ Execute the
Benchmark Code

③ Skip the Sampling

④ Get the Results
HardCodeopu, tsopu

Fig.5. Details of the performance sampling solution for operation-unpredictable code fragments.

1186 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

executed, so as to prevent a malicious cloud provider

from attacking by re-running this workload. If the

sampling condition is satisfied, i.e., rand num exceeds

the threshold set by the application developer, we exe-

cute the chosen micro benchmark, and get the results

HardCodeopu (the encrypted micro benchmark ID) and

the end timestamp tsopu. If it is not satisfied, this sam-

pling is skipped. We can get rand num between 0 and

1, and set the sampling threshold as THR =
Sexp

Smax
,

where Sexp represents the expected sampling frequency

and Smax represents the maximum sampling frequency

that can be in the code fragment. For instance, if we set

THR = 0.5 and Smax = 2 samplings/s in the code, we

can get the expected sampling frequency with Sexp = 1

sampling/s.

The performance sampling solution divides this

code fragment into multiple smaller code fragments, in-

cluding the normal code fragments and the performance

samplings. Therefore, multiple pairs of (HardCode, ts)

of normal fragments and performance samplings can be

generated after this performance monitoring, as shown

in Fig.4.

For the workloads mixing with predictable and un-

predictable code fragments, the application developers

are responsible for the classification between them, as

they know the resource usage of their workloads. More-

over, they can use performance analysis tools to assist,

e.g., PMU events.

4.1.4 Result Generation

Result generation is responsible for: 1) achieving

the workload end timestamp reliably; 2) processing the

performance monitoring data; 3) generating the perfor-

mance summaries and the SGX’s report.

As shown in Fig. 6, the code outside the en-

clave firstly gets the end timestamp end tsout (step

1), and then makes an ECALL to enter the enclave

to record the trusted end timestamp end tsin (steps

2 and 3). Next, the outside code inputs the en-

crypted data generated during the workload execution

into the monitoring enclave (step 4). The monitor-

ing enclave uses the private key SK, which is hard-

coded into the enclave code by the application develo-

per, to convert the ciphertext data to the plaintext

data (step 5). Then, the monitoring enclave generates

the performance monitoring data for each performance

monitoring code fragment (step 6), i.e., {Read/Write,

Read/Write speed} for the operation-predictable code

fragment and {benchmark ID, average execution time}
for the operation-unpredictable code fragment. Our

mechanism collects all the data to generate the per-

formance summaries (step 7).

SGX provides a CPU-signed data structure called

“report” for each enclave, which can be used for re-

mote attestation to confirm the identity of the remote

enclave. A report contains the hash of the code inside

the enclave, the user-defined data which can be used

E
C
A
L
L

R
et

u
rn

E
C
A
L
L

Return

Outside Monitoring Enclave

(Untrusted)

1. Get the End Timestamp

Outside end_tsout

2. Request Trusted Timestamp

4. Input Data into Enclave

(HardCode↪ ts) Set,

start_tsout↪ end_tsout

8. Destroy Monitoring Enclave

Inside Monitoring Enclave

(Trusted)

3. Get the End Timestamp

Inside end_tsin

5. Convert Ciphertext Data to

Plaintext Data

(Using SK for Decryption)

6. Generate the Performance

Monitoring Data

7. Collect the Data and

Generate the Performance

Summaries

Identify a User's Workload

(Distinguish by SK)

SGX's Report

Enclave Code Hash

User-Defined Data

CPU

Signed

Calculate

Hash

Performance Summaries

start_tsout↪ end_tsout

start_tsin↪ end_tsin

Other Sequential Timestamps

Monitoring Fragments' Results

Fig.6. Detailed process of result generation. The finally generated performance results include the performance summaries and the
SGX’s report.

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1187

by application developers, and some other fields. As

shown in the right part of Fig.6, when the performance

summaries are generated, our mechanism calculates the

hash value of them and fills this value into the user-

defined data of the report. Hence the final results of

the performance monitoring mechanism include the In-

tel SGX’s report and the performance summaries. In

addition, we use the enclave code hash in SGX’s re-

port to identify different users’ workloads based on the

difference of the hardcoded private key SK. At last,

the monitoring enclave is destroyed (step 8).

It is worth noting that most of the other TEEs also

have the data structure similar to Intel SGX’s report,

e.g., AMD SEV-SNP’s Attestation Report [21], which

can be used to conduct the same operations for gener-

ating performance results for RODE.

4.1.5 Reliability Analysis

As the cloud providers can only get the executable

files of users’ workloads, they have to conduct re-

verse engineering to convert the binary code into the

source code, for distinguishing performance monitor-

ing instructions from the original workload instructions.

However, reverse engineering [34–36] is non-trivial, time-

consuming, and resource-consuming. Even though the

cloud providers can find out which parts are used for

performance monitoring, the overhead incurred even

overwhelms the benefit that can be obtained. Hence,

it is hard for cloud providers to cheat by speculating

the monitoring instructions from the executable files,

and then increasing their performance dynamically to

respond to each monitoring instruction. Similarly, it is

also impractical to replace the monitoring benchmarks

in the executable files to get better monitoring results.

One may notice that malicious cloud providers may

cheat by forging the timestamps generated in the un-

trusted memory. To prevent such cheating, we use PK

to encrypt each code fragment’s flag, making malicious

cloud providers unable to recognize or tamper with per-

formance monitoring timestamps (mixed with tsnors)

generated in the untrusted memory. Moreover, it is also

infeasible for cloud providers to directly make all code

fragments’ execution time tiny, because the workload

execution time is achieved reliably through four times-

tamps start tsout, start tsin, end tsout and end tsin.

Furthermore, before the execution ends, cloud providers

cannot know which timestamp is end tsout, whose vali-

dity can be verified by end tsin. Therefore, tampering

with timestamps can cause the time difference between

end tsout and end tsin more than 1 s, and malicious

behaviors can be detected.

RODE offers a dynamic link library for the applica-

tion developers to implement reliable performance mon-

itoring. The application developer only needs to call the

library functions with few modifications to the source

code. Besides, the accuracy of performance monitoring

is related to the monitoring positions and sampling fre-

quency set by the application developer, which are the

input parameters of the dynamic link library calling.

4.2 Assessment of the Claimed Performance
Mechanism

Supported by the performance monitoring mecha-

nism, the purpose of AoCP is to generate a unified

metric to assess the performance of a cloud server ex-

ecuting a user’s workload in the decentralized cloud.

Then, the unified metric can be the reliable input to

the incentive mechanism. We divide the process of

AoCP into three steps: 1) verifying the performance

results; 2) comparing the monitoring performance with

the claimed performance of the corresponding cloud

provider’s cloud server, and updating the unified per-

formance assessment in the metric of stability value

(SV); 3) including the performance assessment met-

ric into cloud provider selection for users workloads

to incentivize cloud providers to offer better perfor-

mance. At the end of this subsection, we also analyze

the differences and similarities between AoCP and ex-

isting peer-to-peer incentive mechanisms in depth.

4.2.1 Verification of Performance Results

Based on the performance monitoring mechanism,

a cloud provider can obtain the reliable and verifiable

performance results of a user’s workload, including the

performance summaries and the SGX’s report with the

CPU signature generated by SGX. The verification pro-

cess is shown in Algorithm 1.

We first need to verify the validity of the SGX’s

report to confirm the identity of a remote enclave by

using Intel Attestation Service (IAS) (lines 1–4 in Al-

gorithm 1). Once the SGX’s report is validated, we can

trust the user-defined data embedded in it, which con-

tains the hash value of all the performance summaries

written by the monitoring enclave, as mentioned in the

right part of Fig.6. As shown in lines 5–9, we calcu-

late the hash value of the performance summaries, and

check whether it is consistent with the user-defined field

in the SGX’s report. This step prevents cloud providers

from generating inveracious performance results. Then,

we get all the timestamps generated during workload

execution from the performance summaries, and verify

1188 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

whether start tsin is next to start tsout, end tsout is

next to end tsin, and the other timestamps are ordered

in time, as shown in lines 10–16. This step prevents the

malicious cloud providers from cheating by tampering

with timestamp data. After the above verification pro-

cess, the validity of the performance results is proved.

The reliable performance results can be seen as the ba-

sic input of the AoCP mechanism.

Algorithm 1. Verification of Performance Results

1: flagsig=RemoteAttestationbyIAS(SGX’s report)
2: if flagsig 6= TRUE then
3: return FALSE
4: end if
5: HashPerf ←− CalHash(performance summaries)
6: HashSGX ←− GetUserDefined(SGX’s report)
7: if HashPerf 6= HashSGX then
8: return FALSE
9: end if

10: start tsout, start tsin, ts1, ..., tsn, end tsout, end tsin
←− GetTimestamps(performance summaries)

11: if start tsout − start tsin > 1 or
|end tsin − end tsout| > 1 then

12: return FALSE
13: end if
14: if exists(k ∈ [1, n] and tsk > tsk+1) then
15: return FALSE
16: end if
17: return TRUE

It is worth noting that most of the TEEs also of-

fer the remote attestation service similar to Intel IAS,

e.g., AMD-SP firmware [21]. The time complexity of

Algorithm 1 is O(n), and its execution time is about

190 ms.

4.2.2 Updating Performance Assessment Metric

Each cloud provider can claim the performance of

its cloud servers, but cannot always achieve the claimed

performance when executing a user’s workload. To this

end, we use Ratei to quantify the degree that a cloud

server achieves its claimed performance for executing a

user’s workload i as follows:

Ratei =

m∑
j=1

(
weightj ×

PerfMonitorj
PerfClaimedj

)
,

where PerfMonitorj is the j-th performance moni-

toring result for the user’s workload. PerfClaimedj
is the corresponding claimed performance (e.g., bench-

mark execution results claimed by the cloud provider).

weightj indicates the significance of the j-th perfor-

mance monitoring among all the workload’s monitor-

ing, and is set according to the workload resource

consumption characteristics by the application develo-

per. In addition, we have weightj ∈ [0, 1] and∑m
1 weightj = 1, where m is the total number of per-

formance monitoring in this workload. For each user’s

workload, we calculate the weighted average ratio of all

the performance monitoring results to the cloud server’s

claimed performance as Ratei. Based on Ratei, we fur-

ther define the stability value (SV) as

SVnew = SVold ×
1

n

n∑
i=1

Ratei,

to measure the stability that a cloud server can achieve

its claimed performance in each workload execution

round. n represents the number of workloads in each

round, and n can be tens to thousands of workloads

depending on the scale of the decentralized cloud plat-

form. The initial SV of each cloud server is 1 and SV

is in the range of [0, 1]. For each round, we calculate

the average Ratei of all the workloads, and multiply it

by the old SV value SVold to get the new SV value

SVnew. If the newly updated value is larger than 1, we

set SV = 1 to indicate that the claimed performance is

achieved on average for this round’s workloads. There-

fore, the claimed performance and SV form the unified

metric to jointly assess the actual performance of a spe-

cific cloud server from a cloud provider.

4.2.3 Including Performance Assessment Metric into
Cloud Provider Selection

Based on the performance assessment results gene-

rated by AoCP, a user can select the most appropriate

cloud server for its workloads according to its prefer-

ences. We design a cloud provider selection policy as

follows. We first calculate the total score scoreTotal
of each cloud server for the workload to be executed,

based on the workload’s resource demands and the per-

formance assessment metric of the cloud servers. Then,

the selected cloud server executes the workload and up-

dates its SV . scoreTotal is defined as follows:

scoreTotal =

n∑
i=1

(wti × scorei) +

wtSV × scoreSV , (1)

where scorei, ranging from 0 to 100, rates the lat-

est claimed performance of a cloud server to execute

benchmark i, and scoreSV rates the performance sta-

bility with scoreSV = SV × 100; wti and wtSV , rang-

ing from 0 to 1, rate the similarity of benchmark i

with the workload in terms of resource demand, and

rate the stability value (SV) demand of satisfying the

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1189

claimed performance during the workload execution, re-

spectively. In addition, it shall also satisfy constraints∑n
i=1 (wti)+wtSV = 1 and 0 6 wti 6 1, 0 6 wtSV 6 1.

As application developers can know the resource and

SV demand of the workload based on historical data,

they can determine wti and wtSV . Generally, there

are three kinds of benchmarks, i.e., CPU-intensive,

memory-intensive, and IO-intensive.

In this policy, to obtain the changes of cloud

providers’ performance stability relative to their

claimed performance in a timely manner, we use re-

cent several rounds of workload submissions to update

their SV s (i.e., scoreSV), e.g., we use three rounds in

the experiments of Subsection 5.4. In this way, for the

cloud provider who cheats for long and has been as-

sessed with low SV , we can avoid the cloud provider

having no motivation to provide real claimed perfor-

mance and maintain the performance stability in the

future. In other words, as long as the cloud provider

begins to maintain its performance stability (relative to

its claimed performance) in the recent workload submis-

sion rounds, its SV will be steadily improved, and thus

will get more users’ workloads in subsequent rounds.

The cloud provider selection policy can be seen as

AoCP’s incentive scheme that has the reliable perfor-

mance assessment metric as the input. We mainly use

this policy to prove the incentive effect of our perfor-

mance assessment metric and we can also integrate

other peer-to-peer incentive schemes into our AoCP

mechanism. In Subsection 5.4, we use this selection

policy to prove that the cloud providers with better

performance assessment metrics of AoCP can achieve

more workloads, and thus enforce the cloud providers

to offer the performance as claimed to make profits.

To enable decentralized, reliable, and transparent

performance assessment metric updating and cloud

provider selection, RODE implements AoCP with the

Blockchain technology. The Blockchain technology is

the general technique of decentralized cloud platforms,

and the implementation of AoCP does not need to rely

on any customized attributes of a specific decentralized

cloud’s Blockchain system. Therefore, we implement

AoCP by developing smart contracts on Ethereum to

validate its simplicity and feasibility. In detail, we de-

velop an update contract to update cloud providers’

claimed performance, a reference contract to declare

the workloads to be executed by a cloud provider, and

a performance contract to update the cloud providers’

SV s based on the results from the performance mon-

itoring mechanism. The integration of the Blockchain

Ethereum also brings great improvement to get rid of

the centralization mode of most of the incentive mech-

anisms of peer-to-peer computing systems.

4.2.4 Comparisons Between AoCP and P2P
Incentives

In this subsection, we conduct comparisons between

RODE’s AoCP mechanism and existing peer-to-peer in-

centive mechanisms in depth. The analysis is conducted

from three aspects and summarized in Table 4.

Firstly, since the decentralized cloud providers are

untrusted, it is of significance to obtain reliable cloud

providers’ performance data for the incentive mecha-

nism. AoCP uses the performance results generated

by the performance monitoring mechanism (Subsec-

tion 4.1) as the basic input to the performance incentive

mechanism, and designs the corresponding verification

method (Subsection 4.2.1) to make the input to be re-

liable and verifiable. By contrast, existing peer-to-peer

incentive mechanisms do not consider the reliability of

the input [9–13].

Secondly, the AoCP mechanism customizes the per-

formance stability value (SV in Subsection 4.2.2) as the

metric for the performance incentive mechanism. This

metric can effectively assess whether cloud providers

provide the performance as they claimed, encourage

cloud providers to maintain their performance stability,

and incentivize cloud providers to present real claimed

performance. By contrast, although existing peer-to-

peer incentive mechanisms have similar metrics (e.g.,

peers’ contribution [11] or reputation [13]), they have

no corresponding design for performance assessment,

thereby their metrics cannot be used directly.

Thirdly, AoCP designs an SV -based cloud provider

selection policy as the incentive scheme to incen-

tivize cloud providers to provide the performance

they claimed. Other existing peer-to-peer incentive

mechanisms use two categories of incentive schemes:

Table 4. Comparisons Between AoCP and Peer-to-Peer Incentive Mechanisms

Incentive Mechanism Input Assessment Metric Incentive Scheme

AoCP mechanism Reliable Performance stability value (SV) SV -based cloud provider selection

Peer-to-peer incentive mechanisms [9–13] Unreliable No suitable metric Economy-based [9, 10]

Reciprocity-based [11–13]

1190 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

economy-based [9, 10] and reciprocity-based [11–13], and

include various theories and algorithms, e.g., game

theory [14, 15] and double auction [16]. They utilize the

contribution or reputation of peers as the input to avoid

the malicious behaviors, which have a similar idea to

AoCP. We can also integrate other incentive schemes of

peer-to-peer computing into AoCP’s incentive scheme.

In addition, AoCP also considers some situations that

may occur especially in the scenario of performance as-

sessment incentives, and designs some corresponding

solutions in Subsection 4.2.3.

5 Evaluation of RODE

In this section, we conduct both testbed experi-

ments (Subsection 5.2 and Subsection 5.3) and emula-

tion experiments (Subsection 5.4), to evaluate the fea-

sibility of the performance monitoring mechanism and

the effectiveness of the AoCP mechanism, respectively.

5.1 Evaluation Setup

Testbed Experiments. The purpose of the testbed

experiments is to verify that our performance monitor-

ing mechanism can effectively reflect the trend of the

performance changes of users’ workloads. Specifically,

we check whether the micro benchmarks in our perfor-

mance sampling solution have the same performance

change trend with the workloads. Since current bench-

marks usually take a long execution time, we extract the

logic of the SPEC CPU 12○ and Stream 13○ benchmarks to

build the micro benchmarks for our experiments that

complete within tens of milliseconds.

Since other performance monitoring methods of the

decentralized cloud (stated in Subsection 3.2.1) cannot

guarantee reliability, RODE is fundamentally stronger

than them. Instead, we compare RODE with the state-

of-the-art work OVERSEE [7] which also uses TEE tech-

niques to address the reliable performance monitoring

problem in an environment of mutual distrust. We im-

plement RODE’s performance sampling solution, and

apply the same workloads and benchmarks (shown in

Table 2) as in Subsection 3.2.2. Since SGX’s minimum

timestamp acquisition granularity is 1 s 14○ and resource

contention does not change too much within a few sec-

onds, we set the performance sampling frequency as one

sampling every two seconds for the experiments. The

same hardware and software specifications and interfer-

ence scenarios (shown in Table 1 and Table 3) are used,

as reported in Subsection 3.2.2.

Since OVERSEE [7] (executing the entire workload

and performance monitoring inside SGX) has the limi-

tations for conducting large workloads, we only use

the simple workloads (π calculation and BubbleSort) to

compare RODE with it in Subsection 5.2. To fully vali-

date RODE’s practicability, we evaluate RODE with

large workloads (SVM Train and WordCount) under a

dynamic cloud environment in Subsection 5.3.

In the testbed experiments, we define the error of

performance monitoring as error = |1− tbi
tb0
/ twi

tw0
|, where

tbi and twi represent the benchmark and the workload

execution time, respectively. Specifically, tb0 and tw0

represent the benchmark time and the workload time

when there is no interference workload respectively.

Emulation Experiments. The purpose of emulation

experiments is to test how AoCP impacts the behaviors

of both the cloud providers and users in the decentral-

ized cloud, and then prove that AoCP can incentivize

cloud providers to offer performance the same as their

claimed one. As far as we know, there are no available

public traces of decentralized cloud platforms for us to

conduct the experiments. Thus, we have to generate

the traces by ourselves in a rational manner to better

verify the effectiveness of the AoCP mechanism.

With considerations of the experiment purpose, the

emulation traces should be related to cloud providers’

behaviors, but independent of the workload submis-

sion behaviors or cloud providers’ initial performance

advantages. Therefore, to control irrelevant variables,

we need to submit workloads with identical quantities

in each round, make each type of workloads (CPU-,

memory-, and IO-intensive) be the same amount in

each round, and make each cloud provider have the

same performance advantages when they all behave

well (i.e., cloud providers can be allocated an equal

amount of workloads in each round if they do not re-

duce the performance as they claimed). Moreover, to

explore the impact of different resource and SV demand

of (1) on workload allocations, we need to set several

different sets of wti and wtSV for each type of work-

loads. Based on these settings, we emulate different

behaviors of cloud providers for multiple workload sub-

mission rounds, i.e., not maintaining the performance

stability or presenting the real claimed performance.

The workload submission round can be seen as a fixed

12○https://www.spec.org/cpu2017/, May 2022.
13○https://github.com/jeffhammond/STREAM, May 2022.
14○https://download.01.org/intel-sgx/sgx-linux/2.11/docs/, May 2022.

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1191

time interval, and the experiments can be performed in

arbitrary rounds. Since we want to show the process

of cloud providers’ behaviors affecting the workload al-

locations, we use the minimum rounds (eight rounds)

which can achieve this in the experiments.

In detail, we emulate the process of eight rounds of

workload submissions, submit five CPU-intensive work-

loads (SVM-Train), five memory-intensive workloads

(WordCount), and five IO-intensive workloads (Mon-

goDB with 105 insertions) in each round, and set diffe-

rent weight parameters to the workloads based on (1)

to represent different resource and SV demands, as

shown in Table 5. Moreover, we use interference work-

loads on three high-performance servers in Table 1, to

emulate three cloud providers denoted as A, B, and

C with different performance respectively. We assume

that each cloud provider has one cloud server and each

cloud server can provide higher performance to execute

one of the three types of workloads than the others

(i.e., having the same performance advantages for all

workloads). We use float calculation benchmark, array

copy (2D) benchmark, and insertions/s of MongoDB

to measure the CPU, memory, and IO performance of

the cloud providers, respectively, and convert them into

performance scores, as shown in Table 6.

In Subsection 5.4, we emulate different situations of

cloud providers maintaining performance stability val-

ues and claiming performance to verify the effectiveness

of the AoCP mechanism.

5.2 Comparison with Baseline

We first evaluate the error and overhead of both

schemes. The results are reported in Fig.7, where we

can see that RODE’s performance sampling method

has low error and overhead for both the CPU-intensive

and memory-intensive workloads. RODE achieves the

error rate of 0.3%–4.8% (2.4% on average) with over-

head of 1.22%–2.36% (1.72% on average) for π calcula-

tion, and the error rate of 3.0%–8.1% (5.3% on average)

with overhead of 0.76%–2.22% (1.34% on average) for

BubbleSort. Compared with the results of OVERSEE

shown in Fig.3 (see Subsection 3.2.2), RODE decreases

the performance monitoring error rate by 77.5% on ave-

rage and reduces the overhead by 98.4% on average.

The results indicate that RODE can effectively re-

flect the performance change trend of the workloads.

Different from OVERSEE, RODE integrates encryp-

tion methods to confuse the performance monitoring

fragments with the normal code fragments and only

makes use of SGX to hide the critical part of perfor-

mance monitoring. Moreover, RODE uses the times-

tamp with millisecond granularity outside SGX’s en-

clave, instead of SGX’s trusted timestamp with second

granularity, to measure the performance, and thus de-

creases the performance monitoring error. On the other

hand, RODE offloads the workload outside of SGX’s

enclave and thus reduces both the SGX’s overhead and

the sampling overhead.

5.3 Practicability of Performance Monitoring

Mechanism

In order to validate the practicability of our perfor-

mance monitoring mechanism under dynamic resource

sharing of the cloud environment, we also test the

common cloud workloads SVM Train and WordCount

(shown in Table 2) in different interference scenarios on

the high-performance server as specified in Table 1.

In the experiments, we divide SVM Train into one

operation-unpredictable code fragment (CPU-intensive

model training) and two operation-predictable code

fragments (IO-intensive data reading and trained model

writing), and insert one sampling every two seconds

Table 5. Weight Parameters of Workloads in Emulation Experiments

Workload SVM Train (CPU-Intensive) WordCount (Memory-Intensive) MongoDB (IO-Intensive)

wtCPU i/(i+2) 0 0

wtmemory 0 i/(i+2) 0

wtIO 0 0 i/(i+2)

wtSV 2/(i+2) 2/(i+2) 2/(i+2)

Note: Variable i is an integer in the range of [1, 5], which represents a workload with the specific weight parameters.

Table 6. Claimed Performance of Three Cloud Providers in Emulation Experiments

Cloud Provider scoreCPU (π Calculation) scorememory (Array Copy (2D)) scoreIO (insertions/s)

A 100.0 (43.6 ms) 78.9 (17.0 ms) 82.1 (2 273/s)

B 81.0 (53.8 ms) 100.0 (13.4 ms) 77.6 (2 146/s)

C 76.5 (57.0 ms) 81.6 (16.5 ms) 100.0 (2 770/s)

1192 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

1.22%

2.36%

1.72 %

0.00

0.56

1.12

1.68

2.24

2.80

0 1 2 3 4 5 6

O
v
e
rh

e
a
d
 (

%
)

Average

0.3%

4.8%

2.4%

0.00

1.20

2.40

3.60

4.80

6.00

1 2 3 4 5 6

E
rr

o
r

R
a
te

 (
%

)

Serial Number of Interference Scenarios Serial Number of Interference Scenarios

0 1 2 3 4 5 61 2 3 4 5 6
Serial Number of Interference Scenarios Serial Number of Interference Scenarios

Average

3.0%

8.1%

5.3%

0.00

2.00

4.00

6.00

8.00

10.00

E
rr

o
r

R
a
te

 (
%

)

Average

0.76%

2.22%

1.34%

0.00

0.50

1.00

1.50

2.00

2.50

O
v
e
rh

e
a
d
 (

%
)

Average

(b)

(a)

Fig.7. RODE’s error rate and overhead. (a) π calculation (CPU-intensive). (b) BubbleSort (memory-intensive).

with Float Calculation benchmark into the CPU-

intensive code fragment. Moreover, we divide Word-

Count into one operation-unpredictable code frag-

ment (memory-intensive word frequency statistics) and

two operation-predictable code fragments (IO-intensive

data reading and result writing), and insert one sam-

pling every two seconds with Array Copy (2D) bench-

mark into the memory-intensive code fragment. We

conduct the experiments with eight different interfer-

ence scenarios (one workload for each scenario), as

shown in Table 7. The results are shown in Fig. 8.

Fig.8(a) and Fig.8(c) show the performance samplings’

change trend with the change of interference scenarios

of SVM Train and WordCount, respectively. Normal-

ized load (the red line) is the ratio calculated by twi

tw4
,

where twi represents the workload execution time in

scenario i. The blue dashed lines represent the average

benchmark execution time in each scenario, which has

a similar change trend to the normalized load. Fig.8(b)

and Fig.8(d) show the performance monitoring results

of different code fragments (CPU-, memory-, or IO-

intensive) of SVM Train and WordCount, respectively.

The red curves represent the error of the performance

samplings in operation-unpredictable code fragments.

Table 7. Interference Scenarios in Dynamic Experiments

Scenario SVM Train WordCount

1 11×(CNN+RL+K -means) Redis (15 ports)+

Memcached (2 ports)

2 14×(CNN+RL+K -means) Redis (25 ports)+

Memcached (4 ports)

3 18×(CNN+RL+K -means) Redis (30 ports)+

Memcached (5 ports)

4 22×(CNN+RL+K -means) Redis (35 ports)+

Memcached (6 ports)

5 19×(CNN+RL+K -means) Redis (35 ports)+

Memcached (5 ports)

6 16×(CNN+RL+K -means) Redis (30 ports)+

Memcached (4 ports)

7 13×(CNN+RL+K -means) Redis (20 ports)+

Memcached (3 ports)

8 10×(CNN+RL+K -means) Redis (10 ports)+

Memcached (1 port)

Note: CNN is short for convolutional neural network training.
RL is short for reinforcement learning. Redis workloads are gene-
rated by using the load generation tool Redis-benchmark with
the parameters of c = 1 000 and d = 8 000. Memcached work-
loads are generated by using the load generation tool Memaslap
with the parameters of T = 3, c = 810, X = 10 000, w = 100 000,
and d = 1 000.

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1193

(a)

100.0
87.5
75.0
62.5
50.0
37.5
25.0
12.5
0.0N

o
rm

a
li
z
e
d
 L

o
a
d
 (

%
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s)200

175
150
125
100
75
50
25
0

Scena-
rio 1

Scena-
rio 8Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

Average Benchmark TimeLoad Change Trend Each Benchmark Time

Serial Number of Samplings

0 150 300 450 600 750 900 1050 1200 1350 1650 1800 19501500

200

175

150

125

100

75

50

25

0

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

E
rr

o
r

R
a
te

 (
%

)

2.42%

3.72%

4.36%

3.06%

0.18%

Read Degradation Read Monitoring Write Degradation
Write Monitoring CPU Degradation CPU Monitoring

1 2 3 4 5 6 7 8

Serial Number of Interference Scenarios

0.60%
0.99%

1.31%

(b)

Serial Number of Samplings

100.0
87.5
75.0
62.5
50.0
37.5
25.0
12.5
0.0N

o
rm

a
li
z
e
d
 L

o
a
d
 (

%
)

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s)64

56

48

40

32

24

16

8

0
0 50 100 150 200 250 300 350 400 450 550 600 650500

Scenario 1 Scenario 8Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

Load Change Trend Each Benchmark Time Average Benchmark Time

(c)

120

105

90

75

60

45

30

15

0

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
 (

%
)

10.0

8.8

7.5

6.3

5.0

3.8

2.5

1.2

0.0

E
rr

o
r

R
a
te

 (
%

)

Read Degradation Read Monitoring Write Degradation
Write Monitoring Memory Degradation Memory Monitoring

1 2 3 4 5 6 7 8

Serial Number of Interference Scenarios

0.14%

2.16%

5.94%

8.69%

7.16%

3.20%

3.01%
4.12%

(d)

Fig.8. Validation of the performance monitoring mechanism under dynamic resource sharing of the cloud environment. (a) Performance
samplings’ change trend of SVM Train. (b) Performance monitoring results of SVM Train. (c) Performance samplings’ change trend
of WordCount. (d) Performance monitoring results of WordCount.

1194 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

Since the IO-intensive code fragments apply

operation-predictable performance monitoring, the

monitored performance degradation is equal to the ac-

tual performance degradation all the time. For the

CPU-intensive code fragment of SVM Train, the mon-

itored performance degradation is almost the same as

the actual performance degradation, with the error rate

of 0.2%–4.4% (2.1% on average). For the memory-

intensive code fragment of WordCount, the monitored

performance degradation is slightly larger than the ac-

tual performance degradation, with the error of 0.1%–

8.7% (4.3% on average). This is because the benchmark

is a little more sensitive to the resource contention than

the normal workload in general. Nevertheless, the low

error validates the practicability of our mechanism.

5.4 Effectiveness of AoCP

5.4.1 Maintaining Performance Stability Values (SVs)

We first verify that AoCP can incentivize cloud

providers to maintain their performance stability val-

ues (SV s). In the experiments, we use the workloads

in recent three rounds to update SV , in the considera-

tion of timeliness. To emulate the situation that cloud

providers cannot achieve their claimed performance,

i.e., cannot maintain their SV s, we make A and B’s

performance drop for a few rounds by using interference

workloads, during which 60% of their workloads expe-

rience 30% performance degradation. For each work-

load, the cloud provider with the highest scoreTotal can

get it. The workload allocation results of all the eight

rounds are shown in Fig.9(a). In this figure, “normal”

represents the number of workloads executed with the

claimed performance in each round, and “slow” repre-

sents the number of workloads executed slower than the

claimed performance in each round.

We can observe that A fails to meet its claimed per-

formance when processing eight workloads in rounds

2–4 (the sum of the numbers in the row marked “slow”

of A in rounds 2–4), leading to the decrease of its

scoreSV in rounds 3–7 (the numbers in the row marked

“scoreSV ” of A in rounds 3–7). This further leads to

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

B CA

5

0

Normal

Slow

scoreSV 100

Round 1

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

B CA
Round 2

1

2
3
4
5

1
2
3
4
5

1

2
3
4
5

B CA
Round 3

1

2
3
4
5

1
2
3
4
5

1
2
3

4
5

B CA
Round 4

1

2
3
4
5

1
2
3
4
5

2
1

3
4

5

B CA
Round 5

1

2
3
4
5

1
2
3
4
5

1
2
3
4

5

B CA
Round 6

1
2
3
4
5

1
2
3
4
5

B CA
Round 7

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

B CA
Round 8

1
2
3

4
5

5
0

100
5

0

100
2
3

100
2
3

100
5
0

100
1
3

82.0
4
0

82.0

7
0

100
0
2

63.5
4
0

82.0

9
0

100

1
0

44.5
4

0

82.0

0

100

1
0

54.2

9
0

100
5
0

100
2
0

70.0
8

0

100
5
0

100

5
0

100
5
0

100
5
0

100

i i i

10

SVM Train (CPU-Intensive) WordCount (Memory-Intensive) MongoDB (IO-Intensive)

scoreSV

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

B CA

5
0

Normal

Slow

100

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

B CA

1

2
3
4
5

1
2
3
4
5

2
1

3
4

5

B CA

1

2
3
4
5

1
2
3
4
5

2
1

3
4

5

B CA

1

2
3
4
5

1
2
3
4
5

1

2
3
4
5

B CA

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

B CA

1
2
3
4
5

1
2
3
4
5

B CA

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

B CA

1
2
3
4
5

5
0

100
5
0

100
2
3

100
2
3

100
5
0

100
1
0

82.0
4
0

82.0

0

100
1
0

82.0
4
0

82.0

0

100
4
0

82.0
4
0

82.0
7
0

100
5
0

100
5
0

100
5
0

100
5
0

100
5
0

100
5
0

100

5
0

100
5
0

100
5
0

100

10 10

i i iSVM Train (CPU-Intensive) WordCount (Memory-Intensive) MongoDB (IO-Intensive)

(b)

(a)

Fig.9. Allocation of different workloads with the changing of SV or claimed performance. (a) The case that cloud providers claim the
high performance all the time while it can be lower at times. (b) The case that cloud provider A notifies its performance degradation
on time. The i values (1 to 5) inside the colored squares represent different weight parameters for the workloads corresponding to
Table 6, e.g., the orange square marked with 1 represents the SVM Train workload with wtCPU = 1/3, wtmemory = 0, wtIO = 0, and
wtSV = 2/3.

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1195

the decrease of its scoreTotal (based on (1)) for the

CPU-intensive workloads in these rounds. During these

five rounds, some of the CPU-intensive workloads are

allocated to B and C, though A still keeps claiming

the highest scoreCPU as usual. Similarly, B also fails

to meet its claimed performance when processing three

workloads in round 2. Thus, its scoreSV and scoreTotal
decrease for three rounds, and some memory-intensive

workloads are scheduled to C. Thanks to SV , some

users’ workloads are appropriately allocated to other

cloud providers, and this confirms the effectiveness of

AoCP. As the final statistics shown in Table 8, cloud

providers A, B, and C get 25, 44, and 51 workloads in

total, respectively. It indicates that AoCP can incen-

tivize the cloud providers to maintain their performance

stability value (SV).

Table 8. Final Statistics of the Experiment in Fig.9(a)

Cloud Provider Normal Rate Total Workload Number

A 17/25 = 68.0% 25

B 41/44 = 93.2% 44

C 51/51 = 100% 51

Under AoCP’s incentive on maintaining perfor-

mance stability value (SV), if scoreSV s of all cloud

providers maintain at 100 during the eight rounds, the

workloads’ execution time can reduce by 10.9% in to-

tal compared with the situation in Fig.9(a), where the

time for SVM Train and WordCount can be reduced

on average by 14.5% (21.1% in the best round) and by

3.7% (15.3% in the best round), respectively. MongoDB

workload’s performance keeps stable because no perfor-

mance degradation occurs in the situation of Fig.9(a).

5.4.2 Presenting Real Claimed Performance

In order to check whether AoCP can incentivize the

cloud providers to honestly report their performance,

we conduct another emulation experiment with the

same cloud providers and users’ workloads, and show

the results in Fig.9(b). The only difference is that cloud

provider A actively decreases its claimed performance

at rounds 3 and 4. In detail, A decreases its scoreCPU

to 85, scorememory to 63.9, and scoreIO to 67.1. A hon-

estly reports its real performance information in order

to avoid the decrease of scoreSV .

As observed, although A gets four fewer workloads

in the situation of Fig. 9(b) than in the situation of

Fig.9(a) in rounds 3 and 4, it can quickly get the CPU-

intensive workloads back as soon as its performance re-

covers. As the final statistics shown in Table 9, cloud

provider A gets more workloads (31 workloads in total)

in Fig.9(b) than in Fig.9(a), indicating that AoCP can

incentivize the cloud providers to honestly present their

real performance information.

Table 9. Final Statistics of the Experiment in Fig.9(b)

Cloud Provider Normal Rate Total Workload Number

A 28/31 = 90.3% 31

B 34/37 = 91.9% 37

C 52/52 = 100% 52

With AoCP’s incentive on presenting real perfor-

mance, the workloads’ execution time can be reduced

by 4.2% in total in the situation of Fig.9(b) compared

with the situation of Fig. 9(a), where the execution

time of SVM Train can be reduced by 6.2% on ave-

rage (16.4% in the best round). The time for Word-

Count and MongoDB does not reduce because there is

no change for them in the situation of Fig.9(b).

5.4.3 Large-Scale Simulation

We also conduct simulations to expand the scale of

the experiments, with the process of eight rounds of

workload submissions. Each round has 50 000 CPU-

intensive, memory-intensive, and IO-intensive work-

loads, respectively, whose parameters are set the same

as in the previous experiments. We have 10 cloud

providers, and each of them has three cloud servers

with the same initial state, i.e., server 1: (80, 50, 50),

server 2: (50, 80, 50), and server 3: (50, 50, 80). The

probability of obtaining a workload is proportional to

scoreTotal. The results are shown in Fig.10. In this fig-

ure, the bars represent the total number of workloads

achieved by cloud providers, and the curves represent

the normal rate of each cloud provider’s workloads.

Fig.10(a) shows the results of the case that CP1–

CP3, CP4–CP6, and CP7–CP9 have 5, 3, and 2 rounds

of SV degradation, respectively, during which 90% of

their workloads experience 90% performance degrada-

tion. We can find that the cloud providers with higher

performance stability (normal rate) can get more work-

loads, which can draw the same conclusion in Fig.9(a).

Different from Fig.10(a), Fig.10(b) shows the results of

the case that CP1–CP3 present their real performance

to avoid four rounds of SV degradation, but reduce

all the resource scores by 10. Comparing Fig.10(a) and

Fig.10(b), we also have the same conclusion in Fig.9(b).

Under AoCP’s incentive of maintaining SV , the work-

load execution time in total can be reduced by 22.0% on

average if all the cloud providers maintain their scoreSV

1196 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

21

18

15

12

9

6N
u
m

b
e
r

o
f
W

o
rk

lo
a
d
s

(Τ
1
0

4
)

N
u
m

b
e
r

o
f
W

o
rk

lo
a
d
s

(Τ
1
0

4
)

21

18

15

12

9

6

100

80

60

40

20

0

N
o
rm

a
l
R

a
te

 (
%

) 100

80

60

40

20

0

N
o
rm

a
l
R

a
te

 (
%

)

Cloud Providers

C
P

1

C
P

2

C
P

3

C
P

4

C
P

5

C
P

6

C
P

7

C
P

8

C
P

9

C
P

1
0

Cloud Providers

C
P

1

C
P

2

C
P

3

C
P

4

C
P

5

C
P

6

C
P

7

C
P

8

C
P

9

C
P

1
0

40.0

40.2

40.2

64.5 64.8 77.4 77.7
74.7

74.8

74.8

60.9

61.0

61.1

89.3

89.389.1
77.6

100 100

64.4

(b)(a)

Fig.10. Statistical results of large-scale simulation experiments. (a) The case that some cloud providers cannot provide the performance
as they claimed. (b) The case that CP1–CP3 present their real performance to avoid the SV degradation.

at 100 all the time compared with Fig.10(a). Under

AoCP’s incentive of presenting real performance, the

workload execution time is reduced by 7.4% on average

in Fig.10(b) compared with Fig.10(a).

6 Discussion

6.1 Generality of RODE

RODE uses two common characteristics of Intel

SGX to implement the performance monitoring mech-

anism, i.e., secured memory protection and remote

attestation, which also exist in most of the other

TEEs on various CPU processor architectures, e.g., In-

tel TDX [20], AMD SEV-SNP [21], and ARM CCA [22].

Therefore, it is feasible to adapt RODE to other

TEEs while maintaining the original functionalities,

and RODE only needs the cloud providers to be TEE-

enabled. Although the TEE technique has not been

fully adapted to all types of CPU processors, most pro-

cessor manufacturers are exploring it to deal with var-

ious security issues, especially for the scenario of exe-

cuting workloads requiring security guarantees in un-

trusted remote servers [17, 20–22]. Some decentralized

cloud platforms (e.g., iExec and Golem) are also at-

tempting to integrate TEE techniques to protect the

integrity of the users’ programs and guarantee the exe-

cution results. In addition, the development of TEE

virtualization technologies [37, 38] can make cloud users

use the TEE technique on the cloud servers without

root access, and we also use the SGX’s docker con-

tainer for the evaluation in Section 5. Since Intel TDX

is under development and we do not have servers with

other CPU architectures, we introduce the design and

implement RODE with Intel SGX to validate the effec-

tiveness.

RODE provides a reliable assessment of cloud

providers’ performance to meet the needs of users, who

attach importance to performance and cannot trust

cloud providers. In addition, cloud providers also need

a transparent and reliable performance assessment solu-

tion to demonstrate their high performance. In the face

of these demands, cloud providers and cloud users have

the motivation to utilize RODE, and pay for the per-

formance assessment cost together, i.e., cloud providers

reduce the cloud service prices a little and cloud users

undertake a small reduction in the workload execution

performance. To sum up, RODE is of generality to a

large extent and is expected to become the key tech-

nique to enable robust performance assessment of de-

centralized cloud computing.

6.2 Performance Assessment Metrics

As we focus on the batch workloads with the IaaS

mode, RODE mainly considers cloud providers’ com-

putation performance as the performance assessment

metric for the workload execution. Moreover, the met-

ric of computation performance can be forged by cloud

providers, and thus RODE conducts reliability design

for it. Other performance assessment metrics, e.g., net-

work delay and consistency delay, can also affect the

performance of the decentralized clouds, but are not

the focus of this paper. In addition, these metrics can

be directly obtained and reliably recorded without ad-

ditional reliability design.

7 Conclusions

We proposed RODE, a robust solution to enable

performance assessment for cloud providers of the de-

centralized cloud in an environment of mutual dis-

trust. Empowered by the TEE technique, RODE’s per-

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1197

formance monitoring mechanism can generate reliable

and verifiable performance results for workloads exe-

cuted on untrusted cloud providers. Based on the re-

liable performance monitoring results, RODE’s AoCP

mechanism can reliably assess the performance of cloud

providers in the decentralized cloud and incentivize

cloud providers to offer real and stable performance

for users’ workloads. Our experiments showed that the

performance monitoring mechanism of RODE can de-

crease the performance monitoring error rate by 77.5%

and decrease the monitoring overhead by 98.4% com-

pared with the state-of-the-art work. Besides, via

extensive prototype, emulation, and simulation-based

experiment results, the feasibility, effectiveness, and ef-

ficiency of RODE’s AoCP mechanism are evaluated by

the fact that the mechanism indeed incentivizes the

cloud providers to offer performance the same as they

claimed. Since RODE can be adapted to most of the

TEEs while maintaining the original functionalities, ex-

ploring other TEE techniques except that we used for

RODE may have the potential to further increase the

performance monitoring accuracy and reduce monitor-

ing overhead, which will be interesting future work.

References

[1] Liu H. A measurement study of server utilization in pub-

lic clouds. In Proc. the 9th International Conference on

Dependable, Autonomic and Secure Computing, December

2011, pp.435-442. DOI: 10.1109/DASC.2011.87.

[2] Zheng Z, Xie S, Dai H N, Chen X, Wang H. Blockchain

challenges and opportunities: A survey. International Jour-

nal of Web and Grid Services, 2018, 14(4): 352-375. DOI:

10.1504/IJWGS.2018.10016848.

[3] Dejun J, Pierre G, Chi C H. EC2 performance analysis

for resource provisioning of service-oriented applications. In

Proc. the 7th International Conference on Service Oriented

Computing Workshop, November 2009, pp.197-207. DOI:

10.1007/978-3-642-16132-2 19.

[4] Iosup A, Yigitbasi N, Epema D. On the performance

variability of production cloud services. In Proc. the

11th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, May 2011, pp.104-113. DOI:

10.1109/CCGrid.2011.22.

[5] Garfinkel S. An evaluation of Amazon’s grid computing

services: EC2, S3, and SQS. Technical Report, Harvard

University, 2007. https://dash.harvard.edu/bitstream/han-

dle/1/24829568/tr-08-07.pdf ? sequence = 1&isAllowed = y,

May 2022.

[6] Leitner P, Cito J. Patterns in the chaos—A study of perfor-

mance variation and predictability in public IaaS clouds.

ACM Transactions on Internet Technology, 2016, 16(3):

Article No. 15. DOI: 10.1145/2885497.

[7] Cai X, Shi J, Yuan R, Liu C, Zhen W, Chen Q, Li C, Leng J,

Guo M. OVERSEE: Outsourcing verification to enable re-

source sharing in edge environment. In Proc. the 49th Inter-

national Conference on Parallel Processing, August 2020,

Article No. 71. DOI: 10.1145/3404397.3404409.

[8] Uriarte R B, DeNicola R. Blockchain-based decentralized

cloud/fog solutions: Challenges, opportunities, and stan-

dards. IEEE Communications Standards Magazine, 2018,

2(3): 22-28. DOI: 10.1109/MCOMSTD.2018.1800020.

[9] Aslani R, Hakami V, Dehghan M. A token-based incentive

mechanism for video streaming applications in peer-to-peer

networks. Multimedia Tools and Applications, 2018, 77(12):

14625-14653. DOI: 10.1007/s11042-017-5051-9.

[10] Samuel MD, Balakrishnan R. A grade-based incentive

mechanism with starvation prevention for maintaining fair-

ness in peer-to-peer networks. International Journal of Sys-

tems Assurance Engineering and Management, 2012, 3(2):

84-99. DOI: 10.1007/s13198-012-0098-5.

[11] Zeng F, Chen Y, Yao L, Wu J. A novel reputation incentive

mechanism and game theory analysis for service caching

in software-defined vehicle edge computing. Peer-to-Peer

Networking and Applications, 2021, 14(2): 467-481. DOI:

10.1007/s12083-020-00985-4.

[12] Kang J, Xiong Z, Niyato D, Xie S, Zhang J. Incentive

mechanism for reliable federated learning: A joint optimiza-

tion approach to combining reputation and contract theory.

IEEE Internet of Things Journal, 2019, 6(6): 10700-10714.

DOI: 10.1109/JIOT.2019.2940820.

[13] Nwebonyi F N, Martins R, Correia M E. Reputation based

approach for improved fairness and robustness in P2P pro-

tocols. Peer-to-Peer Networking and Applications, 2019,

12(4): 951-968. DOI: 10.1007/s12083-018-0701-x.

[14] Paudel A, Chaudhari K, Long C, Gooi H B. Peer-to-

peer energy trading in a prosumer-based community mi-

crogrid: A game-theoretic model. IEEE Transactions

on Industrial Electronics, 2018, 66(8): 6087-6097. DOI:

10.1109/TIE.2018.2874578.

[15] Tushar W, Yuen C, Mohsenian-Rad H, Saha T, Poor H

V, Wood K L. Transforming energy networks via peer-to-

peer energy trading: The potential of game-theoretic ap-

proaches. IEEE Signal Processing Magazine, 2018, 35(4):

90-111. DOI: 10.1109/MSP.2018.2818327.

[16] Chen K, Lin J, Song Y. Trading strategy optimiza-

tion for a prosumer in continuous double auction-

based peer-to-peer market: A prediction-integration

model. Applied Energy, 2019, 242: 1121-1133. DOI:

10.1016/j.apenergy.2019.03.094.

[17] Costan V, Devadas S. Intel SGX explained. https://epri-

nt.iacr.org/2016/086.pdf, May 2022.

[18] Hoekstra M, Lal R, Pappachan P, Phegade V, Del Cuvillo

J. Using innovative instructions to create trustworthy soft-

ware solutions. In Proc. the 2nd International Work-

shop on Hardware and Architectural Support for Se-

curity and Privacy, June 2013, Article No. 11. DOI:

10.1145/2487726.2488370.

[19] Sabt M, Achemlal M, Bouabdallah A. Trusted execution en-

vironment: What it is, and what it is not. In Proc. the 2015

IEEE Trustcom/BigDataSE/ISPA, August 2015, pp.57-64.

DOI: 10.1109/Trustcom.2015.357.

https://doi.org/10.1109/DASC.2011.87
https://doi.org/10.1504/IJWGS.2018.10016848
https://doi.org/10.1007/978-3-642-16132-2_19
https://doi.org/10.1109/CCGrid.2011.22
https://doi.org/10.1145/2885497
https://doi.org/10.1145/3404397.3404409
https://doi.org/10.1109/MCOMSTD.2018.1800020
https://doi.org/10.1007/s11042-017-5051-9
https://doi.org/10.1007/s13198-012-0098-5
https://doi.org/10.1007/s12083-020-00985-4
https://doi.org/10.1109/JIOT.2019.2940820
https://doi.org/10.1007/s12083-018-0701-x
https://doi.org/10.1109/TIE.2018.2874578
https://doi.org/10.1109/MSP.2018.2818327
https://doi.org/10.1016/j.apenergy.2019.03.094
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1109/Trustcom.2015.357

1198 J. Comput. Sci. & Technol., Sept. 2022, Vol.37, No.5

[20] Sahita R, Caspi D, Huntley B, Scarlata V, Chaikin

B, Chhabra S, Aharon A, Ouziel I. Security ana-

lysis of confidential-compute instruction set architecture

for virtualized workloads. In Proc. the 2021 Interna-

tional Symposium on Secure and Private Execution En-

vironment Design, September 2021, pp.121-131. DOI:

10.1109/SEED51797.2021.00024.

[21] AMD. AMD SEV-SNP: Strengthening VM isolation

with integrity protection and more. White Paper,

2020, https://www.amd.com/system/ les/TechDocs/SEV-

SNP-s trengthening-vm-isolation-with-integrity-protection-

and-more.pdf, May 2022.

[22] Mulligan D P, Petri G, Spinale N, Stockwell G, Vincent H J.

Confidential computing—A brave new world. In Proc. the

2021 International Symposium on Secure and Private Exe-

cution Environment Design, September 2021, pp.132-138.

DOI: 10.1109/SEED51797.2021.00025.

[23] Naseri A, Navimipour N J. A new agent-based method for

QoS-aware cloud service composition using particle swarm

optimization algorithm. Journal of Ambient Intelligence

and Humanized Computing, 2019, 10(5): 1851-1864. DOI:

10.1007/s12652-018-0773-8.

[24] Jatoth C, Gangadharan G R, Fiore U, Buyya R. SEL-

CLOUD: A hybrid multi-criteria decision-making model for

selection of cloud services. Soft Computing, 2019, 23(13):

4701-4715. DOI: 10.1007/s00500-018-3120-2.

[25] Temglit N, Chibani A, Djouani K, Nacer M A. A distributed

agent-based approach for optimal QoS selection in web of

object choreography. IEEE Systems Journal, 2017, 12(2):

1655-1666. DOI: 10.1109/JSYST.2016.2647281.

[26] Ding S, Wang Z, Wu D S, Olson D L. Utilizing customer sat-

isfaction in ranking prediction for personalized cloud service

selection. Decision Support Systems, 2017, 93: 1-10. DOI:

10.1016/j.dss.2016.09.001.

[27] Al-Faifi A M, Song B, Hassan M M, Alamri A, Gumaei

A. Performance prediction model for cloud service selec-

tion from smart data. Future Generation Computer Sys-

tems, 2018, 85: 97-106. DOI: 10.1016/j.future.2018.03.015.

[28] Xia Y, Zhou M C, Luo X, Zhu Q, Li J, Huang Y. Stochas-

tic modeling and quality evaluation of infrastructure-

as-a-service clouds. IEEE Transactions on Automation

Science and Engineering, 2013, 12(1): 162-170. DOI:

10.1109/TASE.2013.2276477.

[29] Li L, Liu M, Shen W, Cheng G. Recommending mobile

services with trustworthy QoS and dynamic user prefer-

ences via FAHP and ordinal utility function. IEEE Trans-

actions on Mobile Computing, 2020, 19(2): 419-431. DOI:

10.1109/TMC.2019.2896239.

[30] Ardagna D, Barbierato E, Evangelinou A, Gianniti E, Grib-

audo M, Pinto T, Guimaraes A, Silva A, Almeida J. Per-

formance prediction of cloud-based big data applications.

In Proc. the 2018 ACM/SPEC International Conference

on Performance Engineering, April 2018, pp.192-199. DOI:

10.1145/3184407.3184420.

[31] Zou W, Lo D, Kochhar P S, Le X D, Xia X, Feng Y, Chen

Z, Xu B. Smart contract development: Challenges and op-

portunities. IEEE Transactions on Software Engineering,

2019, 47(10): 2084-2106. DOI: 10.1109/TSE.2019.2942301.

[32] Wang P, Meng J, Chen J, Liu T, Zhan Y, Tsai W, Jin

Z. Smart contract-based negotiation for adaptive QoS-

aware service composition. IEEE Transactions on Para-

llel and Distributed Systems, 2018, 30(6): 1403-1420. DOI:

10.1109/TPDS.2018.2885746.

[33] Viriyasitavat W, Da Xu L, Bi Z, Hoonsopon D,

Charoenruk N. Managing QoS of internet-of-things ser-

vices using blockchain. IEEE Transactions on Compu-

tational Social Systems, 2019, 6(6): 1357-1368. DOI:

10.1109/TCSS.2019.2919667.

[34] Mauthe N, Kargen U, Shahmehri N. A Large-Scale empiri-

cal study of Android app decompilation. In Proc. the 28th

IEEE International Conference on Software Analysis, Evo-

lution and Reengineering, March 2021, pp.400-410. DOI:

10.1109/SANER50967.2021.00044.

[35] Pawlowski A, Contag M, Van Der Veen V, Ouwehand

C, Holz T, Bos H, Athanasopoulos E, Giuffrida C.

MARX: Uncovering class hierarchies in C++ programs.

In Proc. the 24th Annual Network and Distributed Sys-

tem Security Symposium, Feb. 26-Mar. 1, 2017. DOI:

10.14722/ndss.2017.23096.

[36] Katz D S, Ruchti J, Schulte E. Using recurrent neu-

ral networks for decompilation. In Proc. the 25th IEEE

International Conference on Software Analysis, Evolu-

tion and Reengineering, March 2018, pp.346-356. DOI:

10.1109/SANER.2018.8330222.

[37] Arnautov S, Trach B, Gregor F et al. SCONE: Secure Linux

containers with Intel SGX. In Proc. the 12th USENIX Sym-

posium on Operating Systems Design and Implementation,

Nov. 2016, pp.689-703.

[38] Tsai C C, Porter D E, Vij M. Graphene-SGX: A practical

library OS for unmodified applications on SGX. In Proc.

the 2017 USENIX Annual Technical Conference, July 2017,

pp.645-658.

Jiu-Chen Shi received his B.S. de-

gree in software engineering from Dalian

University of Technology, Dalian, in

2019. He is currently a Ph.D. candidate

in the Department of Computer Science

and Engineering of Shanghai Jiao Tong

University, Shanghai. His research

interests include resource management

in various architectures, high-performance computing, and

trusted computing.

Xiao-Qing Cai received her B.S.

degree in computer science from North-

eastern University, Shenyang, in 2017.

She is currently a Ph.D. candidate in

the Department of Computer Science

and Engineering of Shanghai Jiao Tong

University, Shanghai. Her research

interests include blockchain, trusted

computing, and resource management.

https://doi.org/10.1109/SEED51797.2021.00024
https://doi.org/10.1109/SEED51797.2021.00025
https://doi.org/10.1007/s12652-018-0773-8
https://doi.org/10.1007/s00500-018-3120-2
https://doi.org/10.1109/JSYST.2016.2647281
https://doi.org/10.1016/j.dss.2016.09.001
https://doi.org/10.1016/j.future.2018.03.015
https://doi.org/10.1109/TASE.2013.2276477
https://doi.org/10.1109/TMC.2019.2896239
https://doi.org/10.1145/3184407.3184420
https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.1109/TPDS.2018.2885746
https://doi.org/10.1109/TCSS.2019.2919667
https://doi.org/10.1109/SANER50967.2021.00044
https://doi.org/10.14722/ndss.2017.23096
https://doi.org/10.1109/SANER.2018.8330222

Jiu-Chen Shi et al.: Reliability and Incentive of Performance Assessment for Decentralized Clouds 1199

Wen-Li Zheng received his Ph.D.

degree in electrical and computer

engineering from Ohio State Univer-

sity, Ohio, in 2016. He is currently

a tenure-track associate professor in

the Department of Computer Science

and Engineering, Shanghai Jiao Tong

University, Shanghai. His research

interests include energy-efficient computing, big data,

distributed machine learning, blockchain, and trusted

computing.

Quan Chen received his Ph.D. de-

gree in computer science from Shanghai

Jiao Tong University, Shanghai, in

2014. He is currently a professor in

the Department of Computer Science

and Engineering, Shanghai Jiao Tong

University, Shanghai. His research

interests include high-performance com-

puting, task scheduling in various architectures, resource

management in datacenter, runtime system, and operating

system.

De-Ze Zeng received his Ph.D. and

M.S. degrees in computer science from

University of Aizu, Aizu-Wakamatsu,

in 2013 and 2009, respectively. He is

currently a full professor in School of

Computer Science, China University of

Geosciences, Wuhan. His current re-

search interests include edge computing,

cloud computing, and future networking technologies. He

has authored three books and published over 100 papers in

refereed journals and conferences in these areas. He serves

in editorial boards of Journal of Network and Computer

Applications, Frontiers of Computer Science, and Open

Journal of the Computer Society. He is a senior member

of CCF and a member of IEEE.

Tatsuhiro Tsuchiya received his

M.E. and Ph.D. degrees in engineering

from Osaka University, Osaka, in 1995

and 1998, respectively. He is currently

a professor of the Graduate School of

Information Science and Technology at

Osaka University, Osaka. His research

interests are in the areas of model

checking, software testing, and distributed fault-tolerant

systems.

Min-Yi Guo received his Ph.D.

degree in computer science from the

University of Tsukuba, Tsukuba, in

1998. He is currently a Zhiyuan

Chair Professor in the Department of

Computer Science and Engineering,

Shanghai Jiao Tong University, Shang-

hai. His present research interests

include parallel/distributed computing, compiler optimiza-

tions, embedded systems, big data, and cloud computing.

He is now on the editorial board of IEEE Transactions on

Parallel and Distributed Systems and Journal of Parallel

and Distributed Computing. Dr. Guo is an IEEE Fellow

and a CCF Fellow.

	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 Decentralized Cloud Platforms
	3.2 Performance Assessment Problems
	3.2.1 Unreliable and Unverifiable PerformanceMonitoring
	3.2.2 High Error Rate and Overhead of ExistingSGX-Based Solution
	3.2.3 No Incentive Mechanisms ConsideringPerformance Assessment

	4 Design of RODE
	4.1 Performance Monitoring Mechanism
	4.1.1 Workload Initialization
	4.1.2 Operation-Predictable Code Fragment with Performance Monitoring
	4.1.3 Operation-Unpredictable Code Fragment with Performance Monitoring
	4.1.4 Result Generation
	4.1.5 Reliability Analysis

	4.2 Assessment of the Claimed Performance Mechanism
	4.2.1 Verification of Performance Results
	4.2.2 Updating Performance Assessment Metric
	4.2.3 Including Performance Assessment Metric into Cloud Provider Selection
	4.2.4 Comparisons Between AoCP and P2PIncentives

	5 Evaluation of RODE
	5.1 Evaluation Setup
	5.2 Comparison with Baseline
	5.3 Practicability of Performance Monitoring Mechanism
	5.4 Effectiveness of AoCP
	5.4.1 Maintaining Performance Stability Values (SVs)
	5.4.2 Presenting Real Claimed Performance
	5.4.3 Large-Scale Simulation

	6 Discussion
	6.1 Generality of RODE
	6.2 Performance Assessment Metrics

	7 Conclusions

