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Abstract
Current microservice applications always meet with load and
call graph dynamics. These dynamics can easily lead to inap-
propriate resource allocation for microservices, and further
lead to Quality-of-Service (QoS) violations of applications.
However, current microservice management works are inca-
pable to handle these dynamics, mainly due to the execution
blocking effect among microservices. We therefore propose
Nodens, a runtime system that enables fast QoS recovery of
the dynamic microservice application, while maintaining the
efficiency of the resource usage. Nodens comprises a traffic-
based load monitor, a blocking-aware load updater, and a
resource-efficient query drainer. The load monitor periodi-
cally checks microservices’ network bandwidth usage and
predicts the monitored loads based on it. The load updater
updates the actual "to-be-processed” load of each microser-
vice to enable fast resource adjustment. The query drainer
allocates just-enough excessive resources for microservices to
drain the queued queries, which can ensure the QoS recovery
time target. Our experiments show that Nodens can reduce the
QoS recovery time by 12.1X with only the excessive resource
usage of 6.1% on average, compared to the state-of-the-art
microservice management systems.

1 Introduction

User-facing applications are evolving towards the microser-
vice architecture, with which the microservices communicate
through the network [25, 41] and are able to scale indepen-
dently [1, 5, 9]. The dependencies of the microservices can
often be denoted by a Directed Acyclic Graph (DAG) [31,32],
each node represents a microservice and each edge represents
the call dependency [24, 38]. Moreover, a production mi-
croservice application often has multiple call graphs [31, 32],
as users have different query patterns. Figure 1 shows an
example dependency graph and two call graphs that handle
different user queries.

In these applications, the load of each microservice change
dynamically, because 1) the load of the entire application may
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Figure 1: An example microservice dependency graph and
two call graphs.

change over time due to the diurnal, irregular, and bursty load
patterns (referred to be “load dynamic”) [3, 19, 28, 40], and 2)
the percentages of queries that go to different call graphs may
change over time (referred to be “call graph dynamic”) [34].
We analyze the open-sourced production traces [2,8], and find
that the load variation is 30% on average (up to 7.5X), and
the percentages of queries that go to different call graphs also
vary by 15% on average (up to 70%).

While it is crucial to ensure the required Quality-of-Service
(QoS) of user-facing applications [20,30,39], prior works [22,
38, 41, 44] fail to handle these dynamic applications. Most
prior works periodically check the load of each microservice,
and adjust the resource allocation of each microservice based
on the monitored load. They are incapable for the current
dynamic microservice applications for two main reasons.

As for the first reason, the monitored load of a microser-
vice may not be its real “to-be-processed” load due to the
cascade call relationship. Many queries may be blocked by
its upstream microservices. A microservice may not be al-
located enough computation resources in this case. Worse,
there is a lag in noticing the load increase. For instance, if
the monitoring period is 1 second, the lag can be 1 second
as well. However, the short lag may result in the long QoS
violation, as a great many of queries may queue up at the mi-
croservice. A very long time is needed to adjust resources and
drain up the query queue, when the microservice’s resource is
allocated based on the monitored load. Our experiments show
that the QoS can be recovered in as long as 84.4 seconds.

Some other prior work [18, 23, 25, 45] predict the QoS and

USENIX Association 2023 USENIX Annual Technical Conference    403



adjust the resource allocation beforehand. They assume all the
queries go through all the microservices, thus are not able to
handle the dynamic loads due to the variation of call graphs.

An intuitive solution is calculating the actual “to-be-
processed” queries of each microservice based on the depen-
dency graph and the call graphs, and adjusting their resources
accordingly. However, it does not work because we find that
the queries of a microservice may also be blocked by other
microservices besides of its upstream microservices in the
dependency graph. For instance, microservice-2 in Figure 1
may be blocked by microservice-4 or microservice-5 that
do not call it in the dependency graph. This happens when
microservice-0 calls microservice-1 and microservice-2 in a
fixed order and the resource allocation of microservice-4 or
microservice-5 is insufficient.

An appropriate solution should be able to capture all the
potential “blocking” relationships, and be able to drain up
the query queues due to the monitoring lag. We therefore
define an execution blocking graph that captures all the supe-
rior microservices that may block a microservice, based on
which we further propose a runtime system named Nodens1

that enables fast QoS recovery, if the loads of some microser-
vices suddenly increase due to the two types of dynamics.
Note that the execution blocking graph is not the same as the
microservice dependency graph.

Nodens comprises a traffic-based load monitor, a blocking-
aware load updater, and a resource-efficient query drainer.
For each microservice, the load monitor periodically checks
the input network traffics, and predicts the current monitored
load of the microservice based on the traffics. This method
is much faster than obtaining the load information from the
microservices’ interfaces, enabling earlier resource allocation
adjustment. The load updater updates the execution blocking
graph with the monitored load obtained from the monitor, and
estimates the actual “to-be-processed” load of each microser-
vice. The query drainer adjusts the CPU resource allocated to
each microservice based on the actual loads of the microser-
vices and the queued queries during the previous process, in
order to quickly recover the QoS.

This paper makes three main contributions.

• Comprehensive analysis of current methods to han-
dle microservice dynamics. The insights obtained from
the analysis identify the opportunities to enable fast QoS
recovery when dealing with microservice dynamics.

• The design of a method to update actual loads of mi-
croservices under execution blocking effect. We con-
struct the execution blocking graph based on microser-
vice dependencies, with which we can update actual
loads of microservices under the blocking effect.

• The design of a policy to drain the queued queries
during the resource adjustment process. The policy

1The source code is available at https://github.com/shijiuchen/Nodens.

allocates excessive resources for microservices to sat-
isfy the QoS recovery time target, while maintaining the
resource efficiency.

We evaluate Nodens with our benchmarks on an eight-
node cluster. The experimental results show that Nodens can
reduce the QoS recovery time by 12.1X with only the over-
provisioned resources of 6.1% on average, compared to the
state-of-the-art microservice management systems.

2 Related Work

There has been some related work on ensuring the QoS of
user-facing applications.

2.1 Reactive Microservice Management
Reactive microservice management systems periodically mon-
itor the state (e.g., load or latency) of each microservice, and
adjust the resource allocation of each microservice based on
the state.

Heuristic methods: SHOWAR [17], PEMA [27], As-
traea [44], and ATOM [26] designed heuristic approaches
to conduct horizontal or vertical scaling for CPU or GPU mi-
croservices based on the resource utilization and response la-
tency. These heuristic methods can determine the resource al-
location for microservices in a quick way, but hard to achieve
the near-optimal values.

Machine Learning (ML) based methods: Nautilus [22]
used Reinforcement learning (RL) as feedback to tune mi-
croservices’ resources based on the application’s response
latency. FIRM [38] identified the critical microservices which
caused QoS violations, and used RL as feedback to adjust
resources for each microservice based on tail latencies, to
guarantee the QoS of the application. ELIS [41] utilized the
bayesian optimization algorithm with tail latencies as input
to recycle the over-provisioned resources and then allocate
just-enough resources to critical microservices. These ML-
based methods can allocate near-optimal resources for mi-
croservices, but are slower due to incremental training under
microservice dynamics.

Moreover, above reactive methods all have long QoS recov-
ery time when handling dynamics of microservices, which is
caused by the long monitoring interval, and the load blocking
under the cascade call relationship among microservices.

2.2 Proactive Microservice Management
Proactive microservice management systems predicted the
performance and resource allocation for microservices based
on historical data. Seer [25] and Sage [23] used ML-based
methods to predict the microservices that cause QoS viola-
tions based on the latency metrics, and increase the allocated
resources for them. Sinan [45] and DeepRest [18] utilized
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Figure 2: Load variation of top 20 microservice applications.

the deep learning-driven methods to predict the end-to-end
latency and estimate the resource allocation for different mi-
croservice stages, which can minimize the resource usage
while ensuring the QoS target. These works only consider
a unique dependency graph, which cannot handle the call
graph dynamics of the microservice application. Moreover,
Madu [34] predicted the load size for microservices based
on time series prediction models with the consideration of
dynamic call graphs into the loss function. However, it cannot
handle the unpredictable dynamic load and call graph cases
that commonly exist in production traces [2, 40].

3 Investigating Dynamic MS Applications

In this section, we first analyze the production trace in the
current public cloud. Then, we introduce microservice bench-
marks we make which have the dynamic call graph features.
At last, we explore the challenges of the current microservice
management systems in dealing with dynamics.

3.1 Dynamic Loads and Call Graphs
We analyze the open-sourced production-level microservice
trace [2] that contains the microservice call dependencies
across 3000+ applications in 12 hours to show the dynamics.

In the analysis, we record the loads of the microservices
for every five seconds, and calculate the load variation. The
load variation is defined to be the load changes in the adjacent
samples. Figure 2 shows the cumulative distribution of the
load variation of the microservices in the top 20 production-
level microservice applications. The top-20 applications are
selected according to the numbers of their queries. As ob-
served, the load variation is from 10% to 40% for 70% of the
samples. In the worst case, the load may increase by 2.3X.

From statistics, we find some of the top 20 microservice
applications have a great many types of call graphs, with a
maximum of 53761 types. All the microservices touched by
a query form a call graph. Different queries may have the
same call graph. Moreover, Figure 3 shows the call graph
proportion variation over time of the top 5 call graphs in the
largest microservice application. A call graph’s proportion
variation is defined to be its proportion changes in the adjacent
samples. We can observe that the percentages of queries to
the call graphs change dynamically with no oblivious pattern.
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Figure 3: The call graph proportion variation of the largest
microservice application in Alibaba Cloud.
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Figure 4: The dependency graphs of the benchmarks. Stateful
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With the large number of call graphs and the unstable varia-
tion, it is non-trivial to profile the call graphs and their patterns,
and define static optimal resource allocation beforehand.

3.2 The Investigation Benchmarks
While current microservice benchmarks do not support dy-
namic call graphs [24,42,46], and the traces [2] do not include
the actual microservices (only the call traces), we build three
benchmarks by integrating the call graph patterns of the trace
and actual microservices in the benchmark suites.

Figure 4 shows the dependency graphs of the three bench-
marks, and the number of call graphs. The HR benchmark
is revised based on the popular HotelReservation bench-
mark [24]. It has five call graphs that respond to five types of
user queries: nearest hotel search, highest rated hotel search,
cheapest hotel recommend, comprehensive hotel recommend,
and hotel reservation. The benchmarks EB1 and EB2 are cre-
ated based on the dependency graphs of the top 2 applications
with multiple call graphs in the trace. For EB1 and EB2, simi-
lar to current benchmarks and related work [24,35,36,46], we
use commonly-used workloads in microservices, i.e., Near-
est Neighbor Searching [6], Word Stemming [13], Quick
Sort [15], Float Calculation [43], and Page Rank [16] to be
the stateless microservices.

3.3 The Long QoS Recovery Time
We show the QoS recovery time and 99%-ile latencies of the
benchmarks with load and the call graph dynamics in this
subsection. The QoS recovery time is the time needed to re-
duce the 99%-ile latency to be below a fixed latency target
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Table 1: Experiment specifications
Specifications

Hardware
Eight-node cluster, Intel(R) Xeon(R) CPU E5-2630 v4

@ 2.20GHz, 256GB Memory Capacity,
25 MiB L3 Cache Size (20-way set associative)

Software Ubuntu 20.04.2 LTS with kernel 5.11.0-34-generic
Docker version 20.10.18, Kubernetes version v1.20.4
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Figure 5: The QoS recovery time and 99%-ile latencies of
benchmarks with ELIS.

(e.g., 100ms) after microservice dynamics happen. Table 1
summarizes the detailed hardware and software configura-
tions. ELIS [41] uses bayesian optimization to tune resource
allocation for microservices. We use ELIS as the representa-
tive resource management system for microservices in this
section. Other systems have similar results and we show them
in the evaluation section.

In the experiments, each benchmark has 6 dynamic load
and call graph scenarios. We run the experiments on three
identical servers managed with Kubernetes [14]. We expand
the evaluation on eight servers in Section 8. In each test, each
microservice is allocated the hand-tuned enough resource, and
the numbers of queries to different call graphs are the same.
Figure 5 shows the QoS recovery time and 99%-ile latencies
in all the test cases. The x-axis represents the dynamic scenar-
ios. For instance, 1.5X(2:1:2:1:4) means the load increases
to 1.5X , and the proportions of the 5 call graphs change to
2/10, 1/10, 2/10, 1/10, and 4/10. As observed, the QoS recov-
ery time ranges from 24.6 to 84.4 seconds, and the 99%-ile
latencies range from 3.1 to 4.8 seconds, in all the test cases.

Both the two types of dynamics result in serious QoS vio-
lations and the QoS recovery time is long.

3.4 Causes of The Long Recovery Time
Our investigation shows the long QoS recovery time is caused
by long monitoring interval, execution blocking effect due to
dynamcis, and slow query draining.

3.4.1 Long Monitoring Interval

Current resource management systems monitor the realtime
latencies of the microservices, and reallocate resources based
on either heuristic methods [17, 27, 44] or machine learning
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Figure 6: The exploration of latency monitoring intervals.
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Figure 7: The 99%-ile latency of each microservice after its
superior microservices have been allocated enough resources.

based methods [23, 38, 45]. These systems often use seconds
or tens of seconds to be the monitoring interval.

As an example, Figure 6 shows the 99%-ile latency and
average latency of the benchmark HR, when we increase its
load to 1.5X. The x-axis shows the time since we increase
the load. As observed, the monitored 99%-ile latency has no
obvious increase in the first second, even if the load already
increases. The 99%-ile latency starts to increase sharply at
about the first second, and becomes stable after 3.3 seconds.
This is because the latencies of the newly arrived queries are
not reported before they complete. In this case, the 99%-ile
latency reported in the first second is actually the latency
before the load actually increases.

Long monitoring intervals are required for current systems
that rely on the latencies of the microservices to adjust the re-
sources. However, a great many of queries may already queue
up at a microservice during the long monitoring interval.

3.4.2 Execution Blocking Effect

The second problem is that the monitored realtime load of a
microservice may not be its actual “to-be-processed” load.

For instance, as shown in Figure 4(a), the load of
microservice-3 may be blocked by microservice-0 if
microservice-0 does not have enough computation resources.
Similarly, the loads of microservice-8 and microservice-9 may
also be blocked by microservice-3. There is more complex
blocking effect, besides of the simple dependency relation-
ship. The effect is referred to be execution blocking effect in
this paper. We will analyze the effect in detail in Section 6.

Figure 7 shows the latencies of the microservices in the HR
benchmark, when we allocated their superior microservices
enough computation resources, normalized to their perfor-
mance with the default resource allocation. The dynamic
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Figure 8: The results of queued query draining.

scenario of this experiment is 1.5X(2:1:2:1:4). As observed,
the latencies of many microservices increase when their su-
perior microservices get enough resources. This is because
these microservices may get the real “to-be-processed” loads
when the blocking effect is alleviated.

Due to the execution blocking effect, the monitored load
of a microservice may be much smaller than its actual “to-be-
processed” load. Current methods based on monitored load
may not allocate enough resources for microservices, thus
require to adjust the resource allocation for multiple times.

Similar to our conclusion, prior machine learning based
and heuristic-based systems also notice that they require to
adjust the resource allocation for multiple times [17, 22, 27,
38, 41]. For instance, the bayesian optimization based system,
ELIS [41], needs to search for 4-15 samplings to find the final
resource configuration for each microservice. Reinforcement
learning-based system, FIRM [38], has to perform multiple
incremental model updates, if the microservice application
has dynamics. Each adjustment interval is also at least several
seconds, incurring more queued queries.

Even if the optimal resource allocations can be determined
directly, the long monitoring interval and the blocking effect
already result in the long query queues. We also evaluate the
optimal resource decision case in Section 8.

3.4.3 Slow Query Draining

The queued queries during the monitoring and the resource
adjustment period can result in the long QoS recovery time.

As an example, Figure 8(a) shows the 99%-ile latency of
the benchmark HR with ELIS, when we change the dynamic
scenario to 1.5X(2:1:2:1:4). As observed, although appro-
priate resources are allocated to each microservice for its
“to-be-processed” load, the 99%-ile latency gradually drops
from time 39.6 seconds to 47.9 seconds instead of backing to
normal immediately. This is because the resource allocation
does not consider the queued queries at each microservice.

We further try to allocate excessive resources for microser-
vices, and explore the impact of excessive ratio on queued
query draining. The excessive ratio is the excessive resource
allocation ratio for microservices after the resource adjust-
ment process. Figure 8(b) shows the draining time under
different excessive ratios. We can observe that the larger the
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excessive ratio, the shorter the draining time.
It is possible to reduce the queued query draining time

through excessive resource allocation, so that can reduce the
overall QoS recovery time. We should carefully determine
the amount of excessive resources to ensure high resource
efficiency, while minimizing the QoS recovery time.

4 Nodens Methodology

We design Nodens to enable the fast QoS recovery of dynamic
microservice applications based on the above analysis.

Figure 9 shows the design overview of Nodens. It com-
prises a traffic-based load monitor, a blocking-aware load
updater, and a resource-efficient query drainer. The monitor
predicts the monitored load of a microservice based on the pe-
riodically obtained network bandwidth usage of the microser-
vice. The load updater calculates the actual “to-be-processed”
load of each microservice, based on the monitored loads of
the microservices, the resource allocation of the microser-
vices, and the execution blocking graph of the application.
The query drainer allocates “just-enough” excessive resources
for each microservice, to quickly drain the queued queries
generated during the above process.

We use the network bandwidth usage to predict the load of
a microservice for the short monitoring time. Section 5 shows
that the incoming network bandwidth of a microservice is
closely related to its realtime load. The monitored bandwidth
is stable with the 1 second interval. With the short and stable
monitoring interval, we can find the load variation quickly
and tune the resource allocation as early as possible, reducing
the number of queued queries at a microservice when the load
increases.

The most challenging part is obtaining the actual “to-be-
processed” load of each microservice, due to the execution
blocking effect. We define an execution blocking graph for a
microservice application. It reflects the blocking relationship
among microservices, and is determined by the microservice
dependency graph and microservice call order. A load up-
dating mechanism is also required to capture the complex
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realtime blocking actions due to the dynamics, based on the
execution blocking graph (Section 6).

It is inevitable that some queries queue up at a microservice
when its load increases, before the increase is noticed and the
resource is adjusted. Without careful design, these queued
queries result in serious QoS violations, or too much resource
is allocated to handle the possible queued queries. The chal-
lenging part in the query drainer is to allocate just-enough
excessive resources to ensure the QoS recovery time target
while maintaining the resource efficiency (Section 7).

Specifically, Nodens manages the resource allocation of a
microservice application in the following steps. 1) Nodens
obtains the dependency graph and the possible call graphs
of the application. Based on the obtained graphs, the execu-
tion blocking graph is built. 2) When serving the application,
Nodens deploys a daemon process on each server to monitor
the network usage of the microservices. 3) A server runs the
load updater, and determines the resource allocation of each
microservice with the query drainer. The load updater col-
lects the bandwidth data of microservices on different servers,
and calculates the actual “to-be-processed” load of every mi-
croservice. 4) The drainer updates the resource allocation
accordingly, and sends back the allocation decision to each
microservice. 5) The daemon process on each server then
reallocates the resources based on the decision of the drainer.

Since the servers are in the same datacenter, we use
gRPC [7] to collect the network usage of each microservice,
and send back the allocation decision. The transfer latency
is less than 5ms in our experiments. Nodens does not need
to modify the source code of microservice applications, and
can be implemented as a plug-in based on Kubernetes [14].
Moreover, Nodens does not focus on microservice deploy-
ment among distributed servers, and the initial deployment is
determined by Kubernetes’s random scheduling strategy.

Similar to prior works [29, 37, 41, 45], Nodens uses Linux
cgroups [4] to adjust CPU resources, which can complete
within 1ms. VPA [10] in Kubernetes also supports in-place
pod vertical scaling with low overhead. After each allocation
decision, if there are no resources available on some servers
in the first place for vertical scale-up, Nodens utilizes the
resource recycling idea [41] to deal with. Nodens will first
recycle the resources from over-provisioned microservices on
these servers, and then allocate them to microservices requir-
ing scaling up. If some servers still lack sufficient resources
for their deployed microservices after resource recycling,
Nodens adopts current load balancing strategies [22,33,41] to
migrate some microservices from busy servers to idle servers.

5 Traffic-based Load Monitor

5.1 The Speedup and Predictability
As discussed in Section 3.4.1, the latency monitoring can re-
sult in long resource adjustment time. Therefore, we use the
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Figure 10: Network traffic monitoring intervals.

upper network bandwidth usage for resource adjustment to
reflect the load change of microservices. For microservice-6
of the EB1 benchmark shown in Figure 4, its upper network
bandwidth usage is the data communication amount per sec-
ond from microservices 0, 2, and 3.

To explore the required interval of network traffic monitor-
ing, we conduct 6 experiments on the HR benchmark, whose
dynamic scenarios are the same as Section 3.3. For each dy-
namic scenario, we first run the benchmark and monitor all
microservices for 10 seconds to obtain their stable network
bandwidth usage (Mbits/s) as the baseline values. Then, we
run the benchmark again and gradually increase the inter-
vals (starting from 50ms) to find the minimum interval that
may get stable monitoring data. We consider the monitoring
data to be stable when the error between obtained microser-
vices’ bandwidth usage and corresponding baseline values
are within 5%. Figure 10 shows that the obtained minimum
monitoring intervals are less than 1000ms. Compared with the
latency monitoring interval (3300ms) we test in Section 3.4.1,
the required interval of monitoring network is 3X shorter.

In addition, we find the upper network bandwidth usage
has a typical linear relationship with the load size (i.e., queries
per second, QPS) for all microservices, and the relationship
between load size and CPU core demand is the same. For
a microservice application, we profile each call graph at 10
sets of loads (evenly from 0 to the peak supported load), and
obtain the performance samples (i.e., the load, upper network
bandwidth usage, and CPU core demand) of all microservices.
The profiling can be done automatically and online. For long-
running applications, call graphs can be known from history.
Otherwise, we can trace the call graph and profile the new
call graphs online. We use the profiled performance samples
to train the linear models for microservices. We then use the
performance samples at 10 other different sets of loads as the
test dataset. Predicting the load size through the network band-
width, and predicting the CPU core demand through the load
size, the prediction accuracies are 97.0% and 97.9% on aver-
age for the 3 benchmarks, respectively. So, we can accurately
predict the load size of each microservice through its upper
network bandwidth, and further predict its CPU core demand.
As prior works have shown that microservices are basically
sensitive to CPU resources [31, 34, 45], Nodens primarily fo-
cuses on CPU core allocation. From our observations, the
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Figure 11: The monitored loads normalized to the actual loads
of microservices.

memory usage of microservices is steady, and we pre-allocate
enough memory capacity for microservices.

Compared with the ML-based methods [38,41], we can use
these models to predict the CPU core demand from network
bandwidth usage, whose overhead is usually less than 1ms.

5.2 Network Traffic Monitoring Methods
As the analysis of production microservice applications [31,
32], most of them have tree-like dependency graphs, while
a few of them show graph-like structures. The in-degrees of
some microservices in a graph-like structure are larger than 1.

For the tree-like dependency graph, we obtain the receive
and transmit bytes of microservices’ corresponding network
interface during the monitoring interval by reading Linux file
/proc/net/dev, and then calculate the upper network bandwidth
one by one based on the tree structure. The overhead of this
method is less than 15ms, which includes reading the Linux
file and calculations. For the graph-like dependency graph, we
use Libpcap [12] to obtain network traffic between each pair
of microservices directly, and then calculate the upper network
bandwidth for each microservice. This method completes in
30ms. After obtaining the upper network bandwidth usage of
microservices, the monitor uses linear regression models to
predict the monitored loads of them as this module’s output.

6 Blocking-aware Load Updater

6.1 Execution Blocking on Monitored Load
Since the effect of execution blocking under dynamics, the

monitored loads may not equal to the actual "to-be-processed"
loads of microservices. In this subsection, we explore the
effect of execution blocking on monitored loads with the
HR benchmark. We conduct an experiment from the initial
state of 1X(2:2:2:2:2) to the dynamic state of 1.5X(3:1:1:1:4).
Figure 11 shows the normalized monitored loads to the actual
loads of microservices. The left part of Figure 12 shows the
dependency graph of HR.

As observed, since the load changes from 1X to 1.5X, we
can find most microservices’ monitored loads are about 1

1.5 of
their actual loads, as their superior microservices can only han-
dle 1X load with current resource allocation. Microservices-8

Call dependency Call order Execution blocking relationship
0

1 2 3

4 5 7 86 9

10 11 12 13

Dependency graph

0

1 2 3

4 5 7 86 9

10 11 12 13

Construct with
call dependencies

0

1 2 3

4 5 7 86 9

10 11 12 13

Execution blocking graph

Figure 12: The dependency graph, and execution blocking
graph of the HR benchmark.

and 9’ monitored load is about 1
3 of their actual loads, as the

proportion of their located call graph also increases two times.
Above observations prove that execution blocking effect can
be caused by the call dependencies among microservices.

Moreover, microserivce-5’s monitored load is about 1
2 of

its actual load, but not 1
1.5 . After looking into the dependency

graph, we find since microservice-4 and microservice-5 are
called by microservice-1 in a fixed order, the microservices
in the subtree of microservice-4 can be the execution block-
ing microservices of microservice-5. In detail, since the load
changes and the proportion of microservice-4’s located call
graphs also changes, microservice-4’s subtree blocks 1

2 of the
actual load, which cannot be passed to microservice-5. Above
observations prove that the execution blocking effect can be
caused by the call order among microservices.

We give a simple example for Figure 12. Suppose queries
pass through part of the microservices in following orders: 1)
log in (microservice-3), 2) authentication (microservice-8),
and 3) reservation (microservice-9). Suppose microservice-
3’s loads increase to 1500 queries per second but it only has
just-enough resources to handle loads of 1000. At this point,
the loads to its downstream microservices are blocked at 1000,
which is 1/1.5 of 1500 (microservices-8 and 9’s actual loads).

If we adjust resources only based on monitored loads, we
need to adjust resources for microservices multiple times to
deal with the execution blocking, which can greatly increase
the QoS violation time. Therefore, a reasonable method is
to combine the microservice dependency graph, monitored
load, and resource allocation to update the actual loads of
microservices in advance. During this process, we need to
primarily consider the execution blocking effect caused by
call dependencies and call order among microservices.

6.2 Execution Blocking Graph
Based on the observations in Section 6.1, we construct the
Execution Blocking Graph for the microservice application.

Figure 13 shows the execution blocking graph construction
based on the microservice dependency graph. The microser-
vice dependency graph is obtained by using tracing tools
(e.g., Jaeger [11]) after running the application online for one
minute. Firstly, for the microservice in the dependency graph
that has multiple in-degrees, we transform the subtree with it
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Figure 13: Execution blocking graph construction.

to multiple identical replicas, to maintain the tree structure of
the dependency graph, as shown in Figure 13(a). The repli-
cated overhead is low, because few microservices have multi-
ple in-degrees in production microservice applications [31].

We then construct the execution blocking relationship for
each sub structure. On the one hand, as shown in Figure 13(b),
microservices X and Y have no fixed call order from their
common superior microservice. In this case, the execution
blocking relationship is equal to the call dependencies among
microservices. On the other hand, as shown in Figure 13(c), X
is called before Y by their common superior microservice. In
this case, the execution blocking microservices of Y are the
ones at the end of the execution blocking subtree with root
X. The number of this kind of microservices can be one or
more. We take an example for better explanations. Suppose
X is the "authentication" microservice, Y is the "reservation"
microservice, and Z is the "log in" microservice. As X is
called before Y by Z, the resource insufficiency of X can block
Y. By contrast, if X and Y are called by Z asynchronously, X
cannot block Y.

Breaking down the microservice dependency graph into
multiple sub structures, we iteratively build the execution
blocking relationship from the root microservice. Then, we
can obtain the execution blocking graph for the microservice
application. Nodens does not need to replicate microservices
with multiple in-degrees in the execution blocking graph.

We use the example of HR benchmark in Figure 12 to fur-
ther explain the whole construction process. As microservices
1, 2, and 3 have no fixed call order, their execution blocking
relationship is equal to their call dependencies. Some other
microservices have similar construction, and the middle re-
sults are shown in the middle part of Figure 12. Moreover,
microservice-5 is called after microservice-4 by their superior
microservice-1. Therefore, its execution blocking microser-
vices are the microservices at the end of the execution block-
ing subtree of microservice-4. Microservices 7 and 9 have
similar construction process with considerations of the call
order. The final execution blocking graph is shown in the right
part of Figure 12.

The execution blocking graph differs from the execution

graph in 2 ways. First, actually an execution graph is sim-
ilar to a call graph, while the execution blocking graph is
constructed once from the dependency graph and it captures
all the possible blocking relationship. Second, we define the
node and edge weights in the execution blocking graph for up-
dating the actual loads for microservices (Section 6.3), while
execution graphs do not have such information.

6.3 Actual Load Updating Mechanism
Based on the execution blocking graph, we then introduce

the actual load updating mechanism.
We define the triple to record current state of each microser-

vice i as (MonitoredLoadi,ActualLoadi,HandleLoadi). The
MonitoredLoadi is obtained from the traffic-based load mon-
itor. The ActualLoadi will be updated by the mechanism for
each microservice, and is equal to the MonitoredLoadi at the
beginning. The HandleLoadi represents the load that can be
handled for each microservice. It is predicted by using the
linear regression model from its corresponding microservice’s
resource allocation. For microservices i and j in the execution
blocking graph, the edge weight EWi j is defined as the load
passing from i to j. The EWi j is equal to the monitored load
from i to j at the beginning, and will be updated during the
updating mechanism.

Since microservices may block the load of their down-
stream microservices, we then define the blocking rate of the
microservice j as:

rate j = max(
ActualLoad j

min(HandleLoad j,MonitoredLoad j)
,1) (1)

In this formula, the blocking rate is the ActualLoad dividing
the minimum of the HandleLoad and MonitoredLoad, as
the former may be larger than the latter since higher-level
blocking. Moreover, as the loads of some microservices may
decrease under dynamics, the blocking rate may be smaller
than 1, and we set rate j = 1 for these cases.

We mainly adopt the Breadth-First-Search (BFS) algorithm
based on the execution blocking graph to calculate the block-
ing rate and update the actual loads of microservices layer
by layer. Algorithm 1 shows the mechanism. We first initial-
ize the load triple for microservices, the execution blocking
graph, and a queue for the BFS process. We then put the root
microservice into the queue, and then come into the major
process of actual load updating. During this process, we first
calculate the blocking rate of the head microservice j of the
queue based on Eq.(1), whose ActualLoad has been updated
correctly, as shown in the lines of 6-8. Then, we start to handle
the downstream microservices of j, as shown in the lines of
9-14. For each downstream microservice k, we first update
the actual load from j to k with the blocking rate of j. If k’s
all entry edges are all updated, we then put it into the queue
to follow the process of the BFS algorithm. The updating pro-
cess is ended when the queue is empty, which represents the
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Algorithm 1: Actual Load Updating Mechanism
1: Initialize (MonitoredLoadi,ActualLoadi,HandleLoadi)
2: Initialize execution blocking graph EBG with edge weights

EWi j
3: Initialize a queue q for the BFS process
4: q.put(EBG.root)
5: while q 6= /0 do
6: j = q.get()
7: ActualLoad j = ∑i→ j EWi j

8: rate j = max( ActualLoad j
min(HandleLoad j ,MonitoredLoad j)

,1)
9: for each downstream microservice k of j do

10: EW jk = EW jk× rate j
11: if all entry edges of k are updated then
12: q.put(k)
13: end if
14: end for
15: end while
16: return ActualLoads for all microserivces

actual loads of all microservices have been updated. Lastly,
we return the actual loads of microservices.

7 Resource-efficient Query Drainer

Although the resource adjustment time of Nodens is greatly
decreased compared to the latency based resource adjustment
methods, the queued query draining is non-negligible, as just-
enough resources can lead to the queued queries being unable
to be drained for a long time. As discussed in Section 3.4.3,
the larger amount of excessive resources can accelerate the
draining process, but obviously sacrifice the resource effi-
ciency. We define the QoS recovery time as the time needed
to reduce the 99%-ile latency to be below a fixed latency tar-
get (e.g., 100ms) after microservice dynamics happen. Same
to prior work [21, 38, 41, 45], the QoS is often defined to be
latency. Nodens can also support other QoS definitions (e.g.,
throughput) through simple adaption. We set the QoS recov-
ery time target for the microservice application, e.g., the QoS
recovery time is within 3 seconds after microservice dynam-
ics happen. Therefore, the excessive resource allocation of the
microservice application can be described as minimizing the
excessive resource allocation on the premise of guaranteeing
the recovery time target.

To allocate just-enough excessive resources for each mi-
croservice, we try to drain the queued queries for each mi-
croservice exactly within the recovery time target. Therefore,
our goal is to calculate the total queries to be processed for
each microservice during the residual recovery time, and then
allocate just-enough excessive resources correspondingly.

We first calculate the overload of each microservice i during
the resource adjustment process as:

OverLoadi = ActualLoadi−min(MonitoredLoadi,HandleLoadi)
(2)

where the ActualLoadi, MonitoredLoadi, and HandleLoadi
have the same definition to Section 6. For some microservices,
their actual loads may be less than or equal to their monitored
and handle loads under microservice dynamics. For these
cases, we set OverLoadi = 0 for them.

After calculating the OverLoadi, we can further calculate
the total queries to be processed for each microservice during
the residual recovery time as:

TotQueryi = OverLoadi×Ti +ActualLoadi× (QT −Ti) (3)

where Ti is the resource adjustment time which causes query
queuing, and QT is the recovery time target. In this formula,
the first item represents the total amount of queued queries,
while the second represents the total amount of normal queries
that need to be processed during the residual recovery time.

At last, we can calculate the total load (i.e., queries per
second) that needs to be handled during the residual QoS
recovery time for each microservice i as:

TotLoadi =
TotQueryi

(QT −Ti)
(4)

Obtaining the TotLoad, we can use the linear model men-
tioned in Section 5.1 to predict the total CPU core demand
of each microservice, and then tune the allocated resources
accordingly. The total CPU core demand includes the just-
enough resources under the corresponding dynamic scenario
and excessive resources for queued query draining. After QoS
is recovered, the excessive resources will be recycled to main-
tain high resource efficiency.

8 Evaluation of Nodens

In this section, we first evaluate the performance of Nodens
in recovering the QoS while achieving resource efficiency.
Then, we show the effectiveness of the blocking-aware load
updater, and the resource-efficient query drainer.

8.1 Evaluation Setup
Table 1 already shows the configurations of the experimental
platform. We evaluate all the three benchmarks HR, EB1, and
EB2 on the eight-node cluster in the experiments. For each
benchmark, we evaluate Nodens with six dynamic scenarios,
including load dynamic, call graph dynamic, and the mix of
the two types of dynamics.

We compare Nodens with two state-of-the-art microser-
vice management systems FIRM [38] and ELIS [41]. FIRM
monitors the latencies of microservices periodically, identi-
fies the critical path and critical microservices, and increases
their resources to the optimal resource allocations using rein-
forcement learning. ELIS first recycles the over-provisioned
resources of non-critical microservices before reallocating
the resources. It uses bayesian optimization to reallocate re-
sources. For FIRM and ELIS, the latency monitoring periods
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Figure 14: The normalized QoS recovery time relative to the recovery time target of benchmarks with Nodens, FIRM, and ELIS.
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Figure 15: The normalized resource usage relative to the just-enough resources of benchmarks with Nodens, FIRM, and ELIS.

are set to be the minimum time with which the latency is
stabilized (i.e., the subsequent latency increase is less than
5%). In Nodens, we use 1 second to be the network traffic
monitoring interval as analyzed in Figure 10.

In our experiments, we already optimize FIRM and ELIS
through offline profiling. While ML-based resource adjust-
ment requires multiple iterations to find the optimal resource
configuration, we optimize them to be able to directly allocate
the optimal resources for microservices. Moreover, we also
give each microservice excessive resources according to the
recommendation of Nodens’s query drainer. The native FIRM
and ELIS perform worse than the ones we used here.

In the following experiments, we use 3 seconds to be the
recovery time target. In other words, Nodens will adjust the re-
source allocation, in order to make sure that the QoS violation
is eliminated in 3 seconds.

8.2 QoS Recovery and Resource Efficiency

In all test cases, microservices are initially allocated the just-
enough resources when the load is 1X and the percentages of
queries that go to different call graphs are identical. Then, we
change the loads of the entire benchmark and the percentages
of queries go to different call graphs, and evaluate the perfor-
mance of Nodens in recovering the QoS before the given QoS
recovery target.

Figure 14 shows the QoS recovery time of all the 3×6= 18
test cases with FIRM, ELIS, and Nodens, respectively. The

time is normalized to the recovery time target (3 seconds).
In the figure, “1.5X(2:2:2:2:2)” represents the case that the
application’s load increases to 1.5X, and the percentages of
queries to the five call graphs are identical. As observed from
the figure, Nodens successfully eliminates the QoS violation
in the given recovery time target. By contrast, the QoS re-
covery time with FIRM and ELIS is 7.9X and 9.4X of the
recovery time target, and 10.2X and 12.1X of Nodens’s.

Nodens has shorter QoS recovery time because it has
shorter but stable load monitoring interval, and calculates
the actual “to-be-processed” load of each microservice. It
is able to reduce the queued queries during the monitoring
interval, and allocate enough resources for each microservice
beforehand. We can also find that the QoS recovery time
is longer with ELIS than with FIRM. This is because ELIS
first recycles the over-provisioned resources, which can spend
some extra time. Moreover, the QoS recovery time is also
short with ELIS and FIRM in some cases (e.g., the scenario
1X(3:2:1) with EB2). It happens when there are only a few
microservices’ resources are insufficient.

Figure 15 shows the corresponding total resource usage
(cores×hours) of the test cases during the QoS recovery pro-
cess. The resource usage is normalized to the case that all the
microservices have “just-enough” resources for the new load
since the dynamic happens. We use the longest QoS recovery
time (i.e., ELIS’s) to calculate the total resource usage for the
fair comparison. As observed, Nodens uses 1.5% and 6.1%
more resources on average than FIRM and ELIS, respectively.
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Figure 16: The QoS recovery time with Nodens-wou and
Nodens-wod normalized to the recovery time target.
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FIRM also uses more resources than ELIS. This is because
FIRM only increases the resources of critical microservices
without recycling the over-provisioned resource.

Therefore, Nodens is resource efficient while realizing the
fast QoS recovery.

8.3 Effectiveness of the Load Updater
In this experiment, we show the performance of Nodens-wou,
a variant of Nodens that disables the blocking-aware load
updater. With Nodens-wou, the query drainer still allocates
excessive resources for the microservices.

The orange bars of Figure 16 show the QoS recovery time
of all the test cases with Nodens-wou normalized to the QoS
recovery time target. As observed, Nodens-wou recovers the
QoS before the recovery time target in only two cases. Com-
pared with Nodens, Nodens-wou requires 2.6X time on aver-
age to recover the QoS.

As an example, Figure 17 shows the normalized resource
allocation timeline of Nodens and Nodens-wou in the test case
1.5X(2:1:2:1:4) of the HR benchmark. Other test cases show
similar conclusions. As shown in the figure, Nodens allocates
excessive resources to the microservices at an early time, and
returns to the “just-enough” resource allocation once the QoS
violation is eliminated. On the contrary, Nodens-wou grad-
ually increases the resource allocated to the microservices
after each monitoring interval. This is because the execu-
tion blocking effect makes Nodens-wou cannot obtain the
actual “to-be-processed” loads of the microservices. For a
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Figure 18: The resource allocation of microservices normal-
ized to the just-enough resources for an example experiment.

microservice, its load pressure is released layer by layer from
its superior microservices.

The blocking-aware load updater is necessary for Nodens.
It avoids the execution blocking effect by updating the actual

“to-be-processed” loads of microservices in advance.

8.4 Effectiveness of the Query Drainer
In this experiment, we show the performance of Nodens-
wod, a variant of Nodens that disables the query drainer. The
blocking-aware load updater still works in Nodens-wod.

The green bars of Figure 16 show the QoS recovery time
of all the test cases with Nodens-wod normalized to the QoS
recovery time target. As observed, Nodens-wod fails to re-
cover the QoS before the recovery time target in all the cases.
Compared with Nodens, Nodens-wod requires 1.6X time
on average to recover the QoS. This is because the queued
queries generated during the resource adjustment cannot be
drained up quickly without the excessive resources allocated
by the query drainer. Moreover, we can find that Nodens-
wod performs better than Nodens-wou in most cases. This is
because Nodens-wod can eliminate the execution blocking
effect which is the most important influence factor that causes
long-time QoS violations.

As an example, Figure 18 shows the actual resources al-
located of microservices normalized to the just-enough re-
sources in the test case 1X(1:1:3:1:4) of the HR benchmark
with Nodens. As observed, Nodens allocates excessive re-
sources for 5 of the 14 microservices in the test case. Specifi-
cally, microservices 3, 8, and 9 belong to the same call graph
and are affected by the same degree of execution blocking,
so they have almost the same ratio of excessive resources.
Microservices 7 and 12 belong to another call graph, and their
resource shortage is smaller than the previous 3 microservices,
so Nodens’s drainer allocates them less excessive resources.

8.5 The Impacts of Dynamics
Since there are load dynamics, call graph dynamics, and
load+call graph dynamics when serving a microservice appli-
cation, we evaluate their impacts on the query drainer.

Figure 19 shows the ratio of total excessive resource allo-
cation for all dynamic scenarios of the 3 benchmarks with

USENIX Association 2023 USENIX Annual Technical Conference    413



1.5
X(2

:2:
2:2

:2)

1X
(1:

1:2
:2:
4)

1X
(1:

1:3
:1:
4)

1X
(2:

1:2
:1:
4)

1.5
X(3

:1:
1:1

:4)

1.5
X(2

:1:
2:1

:4)

1.5
X(2

:2:
2:2

:2)

1X
(1:

3:2
:2:
2)

1X
(1:

1:4
:2:
2)

1X
(3:

1:1
:4:
1)

1.5
X(3

:1:
1:4

:1)

1.5
X(1

:1:
4:2

:2)

1.5
X(2

:2:
2)

1X
(1:

3:2
)

1X
(3:

2:1
)

1X
(4:

1:1
)

1.5
X(4

:1:
1)

1.5
X(3

:2:
1)

D%namic  cenario 

0%

5%

10%

15%

20%

25%

30%

Ex
ce

  
iv
e 
re
 o

ur
ce

  
ra
ti
o

Load d%namic Graph d%namic Load+Graph d%namic 

HR EB1 EB2

Figure 19: The ratio of total excessive resource allocation for
all dynamic scenarios of the three benchmarks.

Nodens. As observed, the excessive resource ratio is smallest
with only call graph dynamics, larger with only load dynamics,
and the largest with both load and call graph dynamics.

This is because dynamic call graph scenarios only cause
a few microservices’ resources to be insufficient and dy-
namic load scenarios cause more, while the simultaneous
dynamic load and call graph scenarios cause the most. As
the resource shortage of more microservices can cause more
queries queued, Nodens’ drainer will allocate more excessive
resources for these scenarios.

8.6 Handling Different Recovery Time Tar-
gets

In this experiment, we show Nodens’s performance in han-
dling different recovery time targets. We use one dynamic
case of each benchmark to conduct the experiment, i.e., 1.5X
load with identical call graph percentages.

Figure 20 shows the QoS recovery time and the actual re-
source allocation for all the cases. The QoS recovery time and
the actual resource allocation are normalized to the recovery
time target and just-enough resources in each case, respec-
tively. As observed, Nodens successfully eliminates the QoS
violation in different given recovery time targets for all the
cases. Moreover, Nodens allocates more/fewer resources for
the case with the smaller/larger recovery time target, which
proves Nodens’s resource efficiency.

Therefore, Nodens can ensure different QoS recovery time
targets, while maintaining resource efficiency.

8.7 Overhead of Nodens
Offline Overhead. To train the prediction models for CPU
core allocation, Nodens needs to profile the bandwidth and
performance data for different microservices at different loads
in advance. The offline profile time is about 25 minutes for
each benchmark. The offline training time of the linear regres-
sion models for each benchmark is less than 150 ms.

Online Overhead. After deploying Nodens online, the ex-
ecution time of the load monitor to get network traffic is less
than 30ms. Moreover, the execution time for the load updater
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Figure 20: The QoS recovery time and resource allocation
under different recovery time targets.

and query drainer are both less than 5ms. The prediction time
and CPU core allocation time are all less than 1ms. The data
transfer latency between servers is less than 5ms. Therefore,
the total online overhead is about 50ms. The overhead is ac-
ceptable as it is far less than the monitoring interval in our
experiments (i.e., 1 second).

We also evaluate Nodens’s overhead using a simulated
large-scale application with 200 microservices and 10 call
graphs based on production-level microservice traces [31].
The online overhead is 126.6ms (59.4ms, 31.6ms, and 35.6ms
for the network monitor, load updater, and query drainer, re-
spectively), the offline profiling overhead is 50 minutes, and
models can be trained in 2s.

9 Conclusion

In this paper, we propose Nodens to enable fast QoS recov-
ery of dynamic microservice applications, while maintaining
the efficiency of resource usage. Nodens’s traffic-based load
monitor predicts the monitored loads for microservices based
on their network bandwidth usage. Nodens’s blocking-aware
load updater calculates the actual "to-be-processed" loads of
microservices based on the execution blocking graph. It can
eliminate the execution blocking effect, so that can reduce the
total resource adjustment time. The query drainer allocates
excessive resources for microservices to drain the queued
queries, ensuring the QoS recovery time target. We have im-
plemented Nodens and the experimental results show that,
compared to the state-of-the-art microservice management
systems, Nodens reduces the QoS recovery time by 12.1X.
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