
QoS-awareness of Microservices with Excessive
Loads via Inter-Datacenter Scheduling

1st Jiuchen Shi
Shanghai Jiao Tong University

shijiuchen@sjtu.edu.cn

2nd Jiawen Wang
Shanghai Jiao Tong University
wangjiawen0606@sjtu.edu.cn

3rd Kaihua Fu
Shanghai Jiao Tong University

midway@sjtu.edu.cn

4th Quan Chen*
Shanghai Jiao Tong University

chen-quan@cs.sjtu.edu.cn

5th Deze Zeng*
China University of Geosciences

deze@cug.edu.cn

6th Minyi Guo*
Shanghai Jiao Tong University

guo-my@cs.sjtu.edu.cn

Abstract—User-facing applications often experience excessive
loads and are shifting towards microservice software architecture.
While the local datacenter may not have enough resources to
host the excessive loads, a reasonable solution is moving some
microservices of the applications to remote datacenters. However,
it is nontrivial to identify the appropriate migration decision, as
the microservices show different characteristics, and the local
datacenter also shows different resource contention situations.
We therefore propose ELIS, an inter-datacenter scheduling sys-
tem that ensures the required Quality-of-Service (QoS) of the
microservice application with excessive loads, while minimizing
the resource usage of the remote datacenter. ELIS comprises
a resource manager and a reward-based microservice migrator.
The resource manager finds the near-optimal resource configu-
rations for different microservices to minimize resource usage
while ensuring QoS. The microservice migrator migrates some
microservices to remote datacenters when local resources cannot
afford the excessive loads. Our experimental results show that
ELIS ensures the required QoS of user-facing applications at
excessive loads. Meanwhile, it reduces overall/remote resource
usage by 13.1% and 58.1% on average, respectively.

I. INTRODUCTION

User-facing applications that have stringent Quality-of-

Service (QoS) requirements are deployed on the datacenter

for high performance and scalability. While popular Internet

service providers and Cloud providers often build multiple

datacenters in different geographic regions [12], [13], [22],

the applications are often deployed on the ones that close to

the end-users for short response latency [14], [27], [32].

For user-facing applications, besides the regular diurnal

load pattern (the load is low except the peak hours), oc-

casional unpredictable extremely high load of user queries

may happen. For instance, excessive queries happen for e-

commence service during the online shopping festivals, for

social network services when breaking news happens [15],

[29]. The computational ability of the datacenter in one region

often may not be able to serve the excessive query load,

and the user-facing applications often experience severe QoS

violations [16], [39].

Adding more servers in the hosting datacenter can resolve

the excessive service loads. However, this method significantly

*Quan Chen, Deze Zeng, and Minyi Guo are the corresponding authors.

Fig. 1. Deploy microservices across datacenters at excessive loads.

increases the operation cost for the occasional excessive loads.

Another solution is leveraging remote datacenters to provide

the required computational ability. Especially, many user-

facing applications have shifted from monolithic software

architecture to microservice architecture [1], [4], [11]. Devel-

oped in a microservice architecture, a complex application is

implemented by connecting many decoupled micro-services

that can be deployed independently and interact with each

other through network [19]. It is more resource-efficient to

only deploy the necessary microservices on the remote data-

centers.

Figure 1 shows an example of using a remote datacenter

to support the excessive load of a microservice-based user-

facing application. As observed, an efficient inter-datacenter

scheduling needs to � use the limited resource in the local
datacenter the best, � identify the appropriate microservices
to be migrated to the remote datacenter, and � minimize the
resource usage in the remote datacenter. There is some prior

work on managing the resource allocation of the microservices

for ensuring the QoS of user-facing applications with diurnal

load pattern [26], [38], [41]. However, they assume that

the local datacenter has sufficient computational power for

the user-facing application. In this scenario, the servers are

connected with high bandwidth network, and they simply use

Kubernetes [7] to place the microservices.

Two new challenges have to be resolved in scheduling mi-

croservices across datacenters, compared with the scheduling

inside a datacenter. First of all, the bandwidth and latency of

the public network between datacenters are much worse than

324

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00039

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
S5

36
21

.2
02

2.
00

03
9

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

those of the network inside a datacenter. The microservice

placement matters due to the frequent data communication be-

tween microservices. Second, the microservices show different

performances (throughput and latency) when they are assigned

the same amount of resources (CPU time, memory, etc). It

is challenging to determine the microservices that should be

migrated to the remote datacenter at excessive local load.

We therefore design ELIS, an inter-datacenter scheduling

system that ensures the required QoS of user-facing appli-

cations while minimizing the resource usage of the remote

datacenter at excessive loads. ELIS comprises a resource
manager and a reward-based microservice migrator. For a

microservice application to be deployed, the microservices are

initially deployed on the local datacenter. When excessive load

happens, the resource manager determines the resource adjust-

ment order of the microservices according to their performance

status, and uses the Bayesian Optimization (BO) algorithm to

minimize resource usage. The resource manager makes the

local datacenter support the highest load with the ensured

QoS. When the local datacenter is not able to support the

load, the microservice migrator migrates some microservices

to a remote datacenter. The migrator minimizes the overall

resource usage and remote resource reservation on the basis

of guaranteeing the QoS and throughput targets. The major

contributions of this paper are as follows.

• Comprehensive analysis of microservice deployment
across datacenters under excessive loads. The analysis

motivates us to design an inter-datacenter microservice

scheduling system.

• The design of BO-based resource management policy
on the local datacenter. The policy recycles resources

from some microservices and reallocates them to the

microservices that tend to result in the QoS violation.

It maximizes the supported peak load of the local data-

center.

• The design of a method to search for the to-be-
migrated microservices. We identify two guidelines with

which we can determine the to-be-migrated microservices

that reduce the tail latency of user-facing applications the

most at excessive load.

We evaluate ELIS on an emulated geo-distributed datacenter

environment. The experimental results show that ELIS reduces

the overall resource usage by 13.1% and remote resource

reservation by 58.1%, while ensuring the required QoS at

excessive load, compared with state-of-the-art work.

II. RELATED WORK

Prior related work mainly falls into three categories: task

scheduling within datacenters, task scheduling across datacen-

ters, and managing resources for microservice architecture.

A. Task Scheduling within Datacenters

In the aspect of task scheduling inside the datacenter,

PARTIES [14], CLITE [32] and Twig [31] co-located latency-

critical (LC) services with batch applications and maximized

resource utilization while meeting the QoS targets for LC

services through resource partitioning. Rhythm [41] quantified

the interference tolerance abilities of different stages of an LC

service, and deployed ones with higher anti-interference ability

along with more batch jobs to improve resource efficiency.

These works do not apply to microservice applications whose

stages have frequent data interaction. Moreover, they did not

consider the public network effect for resource management

when the application is deployed geographically distributed.

B. Task Scheduling across Datacenters

In terms of geo-distributed task scheduling, Long et al. [28]

formulated the task scheduling problem in a collaborative

cloud-edge environment as a non-cooperative game. Some

efforts focused on mitigating performance bottlenecks caused

by limited public network bandwidth between datacenters.

Gaia [23] dynamically eliminated insignificant communication

between datacenters while maintaining the correctness of an

ML algorithm. Hung et al. [25] reordered the task execution

order on the same datacenter to minimize the global job

completion time across datacenters. Yugong [24] saved the

precious wide area network bandwidth through project place-

ment, table replication and job outsourcing. However, none of

these works took into account the excessive load scenario with

limited resources of the local datacenter, which is desired to

minimize the resource usage and remote resource reservation.

C. Managing Resources for Microservices

Wisp [37] and DAGOR [42] designed load adjustment

mechanisms by setting different priorities to balance mi-

croservices. FIRM [33] identified the critical microservices

that cause SLO violations and dynamically re-provisioned

resources to avoid SLO violations. Many other works con-

tributed to the resource management of microservices us-

ing machine learning or heuristic methods [18], [20], [21],

[38], [40]. These researches did not consider deploying mi-

croservices across datacenters. Nautilus [17] focused on the

microservice deployment in the public network. However,

it did not consider how to maximize the utilization of the

local datacenter’s resources while minimizing remote resource

reservation. When adapting to our scenario of excessive loads,

it has low resource efficiency.

III. MOTIVATION

In this section, we investigate the problem of QoS violation

due to the poor resource management in a datacenter, and

show the factors that impact the response latency when a

microservice application is geographically distributed.

A. Investigation Setup

We use three identical servers to emulate two datacenters.

One server emulates the local datacenter, and the other two

servers are used to be the remote datacenter. To emulate the

public network between datacenters, we use the network tool tc
to limit the bandwidth of 200mbit/s and the Round-Trip Time

(RTT) of 10ms between the datacenters. The public network

bandwidth and the RTT are the results we profile of two virtual

machines on two regions of a popular public Cloud.

325

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXPERIMENT SPECIFICATIONS

Specifications

Hardware
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz

20 physical cores, 256GB Memory Capacity
50 MiB L3 Cache Size (20-way set associative)
200mbit/s public network bandwidth, 10ms RTT

Software Ubuntu 20.04.2 LTS with kernel 5.11.0-34-generic
Docker version 20.10.8, Kubernetes version v1.20.4

Benchmarks DeathStarBench: SocialNetwork (SN),
MediaService (MS), HotelReservation (HR)

0x

2x

4x

6x

8x

SN-low SN-high MS-low MS-high HR-low HR-high

N
or

m
al

iz
ed

 9
9%

-i
le

 L
at

en
cy

Fig. 2. The 99%-ile latencies of the benchmarks with Kubernetes. The red
line is the normalized 99%-ile QoS target of the benchmarks, whose Y value
is “1x”.

We use three open-sourced microservice benchmarks So-

cialNetwork (SN), MediaService (MS), and HotelReservation

(HR) in the DeathStarBench [19] to perform our experiments.

Each benchmark in DeathStarBench has multiple microser-

vices of different characteristics [19]. When the load of a

service increases, its compute-intensive microservices (e.g.,

compose-review) often require more CPU time and LLC

space, while backend database services (e.g., memcached)

require more memory and IO bandwidth.

The detailed hardware, software configurations and bench-

marks are shown in Table I.

B. Resource Inefficiency in Local Datacenter

This experiment investigates whether the current microser-

vice management system can effectively utilize the resources

in the local datacenter. Kubernetes, one of the most popular

scheduling frameworks [17], [33], [41], is used to manage the

microservices. We measure the tail latencies of the benchmarks

at low load and high load. We use 70% and 90% of the peak

supported load of the local server if the resource allocation is

optimized to be the low load and the high load respectively.

Fig. 2 shows the normalized 99%-ile latency of the bench-

marks with Kubernetes. As shown, the benchmarks experience

QoS violations at both the low load and the high load. The

QoS violation originates from the poor resource allocation.

Take the benchmark HR at high load as an example. Fig. 3

shows the CPU time usage of the microservices with Kuber-

netes normalized to the case with the hand-tuned CPU time

allocation that supports the highest load. The hand-tuned CPU

allocation ensures the required QoS target of the benchmark.

As observed, some of the microservices use smaller CPU time

while other microservices use larger CPU time.

The resource contention with Kubernetes does not use the
computational resource efficiently, and results in the QoS
violation even at a low load.

0x

0.4x

0.8x

1.2x

1.6x

front
end geo profi

le rate

recom
mend reser

ve
searc

h user

N
or
m
al
iz
ed
C
P
U
U
sa
ge

Fig. 3. The normalized CPU allocation relative to the hand-tuned CPU
allocation of HR at high load with Kubernetes. The red line is the normalized
hand-tuned CPU allocation for each microservice which can ensure the QoS,
whose Y value is “1x”.

2.69x

0%

30%

60%

90%

120%

150%

180%

frontend geo
profile rate

recommend
reserve

search user

N
or

m
al

iz
ed

 9
9%

-i
le

L
at

en
cy

without network cost

with network cost

Fig. 4. The normalized 99%-ile latencies of HR at excessive load if a
microservice is migrated to the remote datacenter. The latency is normalized
to the case when all the microservices are in the local datacenter.

C. Problems of Migrating Microservices

When the local datacenter cannot afford an excessive load,

some microservices should be migrated to remote datacenters

for ensuring the QoS. In this subsection, we investigate the

factors that determine the end-to-end latency of a user-facing

application when some of its microservices are deployed in

the remote datacenter. In this experiment, we use HR as the

example to show the factors that impact the response latency

of a user-facing application when some of its microservices

are migrated to the remote datacenter. The load of HR in this

experiment is 1.5X of the peak supported load of the local

datacenter, if the resources are carefully allocated. We report

the 99%-ile latency of the benchmark in this experiment.

Figure 4 shows the normalized 99%-ile latencies of the

benchmark if a microservice is migrated to the remote datacen-

ter. In the figure, the x-axis shows the migrated microservice.

In the experiment, the bar “with network cost” shows the case

that the bandwidth between the datacenters is limited to be

200Mbps and the RTT is 10ms, and the bar “without network

cost” shows the case that the public network bandwidth is the

same as the local network bandwidth and has no RTT.

As observed from Figure 4, HR achieves shorter 99%-

ile latency when a microservice is migrated to a remote

datacenter. The microservice is able to obtain more com-

putational resources from the remote datacenter. However,

when the microservice frontend or search is migrated to the

remote datacenter, the 99%-ile latency of HR actually increases

significantly. If frontend is migrated, the normalized 99%-ile

latency of HR is 2.69, although more computational resources

is obtained. After looking into the communication topology of

the microservices, we find that frontend and search needs to

326

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. The bytes of data transferred between microservices for a single query
in HR. The x-axis is the source, and the y-axis is the destination.

transfer a large volume of data to or from other microservices.

In this case, the slow public network results in the large

data communication overhead, and the overhead results in the

longer response latency.

In more detail, Fig. 5 shows the size of data transferred

between microservices in HR. As shown in this figure, frontend
and search communicate with the most microservices (fron-
tend communicates with four microservices and search com-

municates with three microservices). In this case, if frontend
is migrated, the communication overhead is large.

The case “without network cost” in Figure 4 reveals the

normalized 99%-ile latency of HR if the communication

overhead is eliminated. Observed from this result, the serious

latency increase due to the migration of frontend or search is

eliminated. However, migrating different microservices show

different impacts on reducing the response latency. For in-

stance, migrating reverse is able to reduce the response latency

by 97.1%, while migrating user has a negligible effect on

reducing the response latency. This is because the microser-

vices have different sensitivities to the insufficient resource

at excessive load. Looking into the resource usage of the

experiment, the microservices mainly contend for the CPU

resource, the reserve microservice is CPU-intensive, while

user is not. It is more profitable to migrate microservices that

are sensitive to the current stressed resources.

Therefore, when a microservice-based user-facing applica-
tion suffers from an excessive load, it is necessary to carefully
determine the microservices that should be migrated to the
remote datacenter. The decision should be made based on the
characteristics of the microservices, the contention situation
on the local datacenter, and the public network situation.

IV. ELIS METHODOLOGY

Based on the above observations, we design and implement

ELIS, an inter-datacenter scheduling system that ensures the

required QoS of user-facing applications, while minimizing

the resource usage of remote datacenter at excessive loads.

Fig. 6 shows the overview of ELIS, which comprises a

resource manager for resource adjustment and a reward-
based microservice migrator to migrate microservices between

local and remote datacenters. The resource manager allocates

each microservice “just-enough” resources (e.g., core time,

shared cache ways, memory space, and network bandwidth),

so that the local capacitated datacenter is able to maximize

Fig. 6. Design overview of ELIS.

the peak achievable throughput of the local datacenter without

QoS violations. When a user-facing application suffers from

an excessive load (i.e., the load that higher than the ”peak

achievable throughput”), the microservice migrator selects and

migrates some microservices to the remote datacenter for

ensuring the required QoS. Specifically, ELIS manages the

deployment of a microservice-based user-facing application s
in three steps.

(1) ELIS monitors the load of the service s periodically.

Based on the loads in the last interval, the resource manager

adjusts the amount of resources allocated to each microservice.

While the microservices on the same datacenter tend to

contend for the resources if the load is relatively high, the

challenging parts here are identifying the critical path in the

microservice graph, and reallocating some resources to the

microservices on the critical path from other microservices,

without making them become a new performance bottleneck.

A Bayesian Optimization based method is leveraged to handle

the above complex contention situation (Section V).

(2) If the resource manager finds that the local datacenter

is not able to host the excessive load, ELIS migrates some

microservices to the remote datacenter. As the effect of mi-

grating a microservice is impacted by many factors (discussed

in Section III-C), the challenging part here is to determine the

appropriate microservices to the remote datacenter. Therefore,

we define a migration reward to quantify the benefit of migrat-

ing a microservice. The reward of migrating a microservice is

determined by the potential performance gain and the pubic

network communication cost (Section VI).

(3) If the load of s drops, ELIS migrates some microservices

back to local, in order to eliminate the long communication

overhead and reduce the remote resource usage.

It is worth noting that ELIS does not need to modify

the source code of microservice applications, and can be

implemented as a plug-in based on Kubernetes.

V. RESOURCE MANAGER

In the section, we present a resource manager to maxi-

mize the supported throughput of the local datacenter, where

327

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

Bayesian optimization is leveraged to adjust the resource

allocation for each microservice. Given the limited resource

capacity in the local datacenter, it is essential for the resource

manager to 1) minimize the resource usage while ensuring the

QoS target in normal loads, and 2) efficiently utilize resources

to achieve as higher peak throughput as possible in excessive
loads.

A. Microserivce Dependency Graph Abstraction

The request flow passing through the microservices can be

abstracted into a directed acyclic graph (DAG) G = (V,E)
as shown in top left part of Fig. 7. The vertices V represent

the microservices, the edges E represent the communications

between microservices (i.e., dependency). Both the vertices

and the edges are weighted, referring to the serving time of

the corresponding microservice and the data transmission time

between corresponding microservices, respectively. Note that

there may be multiple paths from the source vertex to the

destination vertex. Different paths may have different vertices,

representing different microservices. The path with the highest

weight sum (i.e., the maximum sum of serving time and

data transmission time) is defined as the critical path of the

corresponding application [33]. The latency sum of the critical
path is regarded as the overall latency of the application. The

data transmission time between dependant microservices in

different datacenters imposes a high influence on the appli-

cation’s performance and hence the microservice deployment

and resource allocation decisions should be carefully made,

especially in the case with an excessive load exceeding the

capacity of the local datacenter.

B. Resource Adjustment Order

Considering the capacity limitations of the local datacenter,

it is highly desirable to give each microservice “just-enough”

resources, so as to achieve as high QoS as possible. To allocate

adequate resources to an application, previous works advo-

cated searching all resource dimensions of all microservices

together [17]. However, this incurs a huge search space and

it is non-trivial to achieve an acceptable solution. Instead

of treating an application as a whole, we take a fine-grain

approach and allocate resources for each constituent microser-

vice individually first and then adjust the resource allocation

to achieve the QoS target by analyzing each microservice’s

execution characteristics, i.e., the 99%-ile latency. During

such process, obviously the resource adjustment order of the

microservices is essential to the eventual overall performance

as the later adjusted microservice can only use the residual

resources. As illustrated in Fig. 7(a), we propose a two-step

microservice ordering strategy for resource adjustment.

The first step is to analyze the criticality of each path
of a microservice application. Prior works have shown that

the microservices on the critical path (CP) are relatively

important [33], [41], and intuitively higher priority should be

given to them to mitigate possible QoS violations. However,

note that the core of resource adjustment is to compensate the

microservices with not-enough resources by releasing some

Fig. 7. The resource manager that manages local datacenter.

resources from the over-provisioned ones. The microservices

on the critical path are less like to be over-provisioned and

therefore we give higher priority to the microservices that are

not on the critical path. Consequently, we sort the paths in

ascending order by the execution time profiled in the last time

interval, and first adjust the resources of the microservices on

the shortest path.

The second step is to analyze the criticality of different
microservices on the same path. For the microservices on the

same path, we similarly should give higher resource adjust-

ment priority to the microservices with better performance,

in the expectation that more resources could be released and

compensated to the microservices with poor performance.

Specially, we use the ratio of 99%-ile latency and 50%-ile

lantecy L99/L50 [33] to assess the microservice performance,

and also sort them in an ascending order.

After the above two steps, we finally get a resource ad-

justment order of all the constituent microservices of an

application. Thereafter, the next critical thing is how to adjust

the resource allocation to achieve our goal of minimizing the

resource usage while ensuring the QoS.

C. Bayesian Optimization based Resource Adjustment

The core of resource adjustment is to make each microser-

vice allocated with “just-enough” resources to achieve its

QoS target. Accordingly, the resource manager will adjust the

resources following the two principles: (1) For a microservice

that meets the QoS target, the resource manager will try

to lower the resource allocation quota without lowering the

QoS, in order to release some resources for compensation. (2)

For a microservice with QoS violation, the resource manager

will try to compensate it by allocating more resources within

the available capacity of the local datacenter. Essentially, the

resource adjustment of each microservice can be described as

an optimization problem that minimizing the resource usage
on the premise of QoS guaranteeing.

Unfortunately, it is non-trivial to solve such an optimization

problem at runtime. Firstly, we do not, and usually it is

not practical to, have any prior knowledge on the achievable

performance of a microservice for a given resource allocation

during runtime. Secondly, a resource allocation actually refers

to a multi-dimensional resource configuration, which together

constitutes a large multi-dimensional search space. We notice

328

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

that Bayesian Optimization (BO) is a promising solution to

address the above two challenges. Firstly, BO does not require

any prior knowledge about the objective function. As we have

known, the relation between a resource configuration and the

achievable performance is a black-box function. Secondly,

BO is able to find a near-optimal solution with a limited

number of resource configuration samples [32], while other

black-box optimization methods, such as deep neural networks

and reinforcement learning, require lots of training data and

are not suitable to apply at runtime. Thus, we explore the

BO algorithm to design our resource adjustment strategy.

Moreover, to address the curse-of-dimension in microservice

applications, ELIS trains an individual BO model for each

microservice to find its near-optimal resource allocations. This

is different from traditional works [32], [34] using a uniform

BO model for all the co-located workloads and is reasonable

for long-running services [33].

The BO algorithm first fits a surrogate model using an initial

sample set, where the surrogate model models the resource

adjustment optimization problem. Then it repeatedly selects

the next point to sample and updates the model according to

the newly sampled data. Therefore, we should first choose a

surrogate model to model the resource adjustment optimization

problem as the objective function. In ELIS, we adopt Gaussian

Process (GP) as the surrogate model, which is widely used

and robust to noise and fluctuations of sampling. In order to

evaluate the objective function, we design a normalized score
function that assigns scores to the objection function evalu-

ation. This function scores the performance (99%-ile latency

and throughput) of the microservice under the corresponding

resource configurations (CPU core time, memory space, shared

cache ways, and network bandwidth) at the end of each time

interval, and is defined as follows,

Score =

⎧⎪⎨
⎪⎩

1
2 × √

QoSrate × Thrrate, if QoS/tpt violates,

1
2 + 1

2 × 4
√∏4

i=1 (1 − RUi), otherwise.

(1)

QoSrate measures the degree that a microservice meets its

QoS target with QoSrate = max(QoStarget/QoSeval, 1.0),
and is set to 1 if the QoS target is exactly met. Thrrate mea-

sures the degree that the microservice meets with its through-

put target with Thrrate = max(Threval/Thrtarget, 1.0), and

is set to 1 if the throughput target is met. RUi represents

the utilization of resource i relative to its total capacity in

the local datacenter with RUi = Resusedi /Restoti . This score

function ranges from 0 to 1, which guides us to search in

the right direction in the searching space. If either the QoS

or throughput targets is not satisfied, the function value is

between 0-0.5. A higher score implies a higher degree of

satisfaction. Otherwise, the function value is between 0.5-1.

In this case, we should intend to minimize resource usage

after ensuring QoS and throughput targets.

In addition, an acquisition function is needed to select the

next point to sample. We adopt Expected Improvement (EI)

function, which proves to converge fast and is effective for

complex jobs [36]. As shown in Fig. 7 (b), for each time in-

terval, the acquisition function determines which configuration

point is the next to be sampled. We sample the corresponding

performance metrics (the 99%-ile latency and throughput from

Jaeger [5]) under the selected configuration point. We then use

Eq. (1) to evaluate this configuration point, and use this new

sample to update the surrogate model. This process iteratively

proceeds until the EI is converged, e.g., smaller than 10−5 in

our implementation.

VI. REWARD-BASED MICROSERVICE MIGRATION

Occasionally, the local datacenter may fail to provision

enough resources to achieve the desired performance when

there are excessive loads. In this section, we introduce a

reward-based microservice migrator to deal with the excessive

user requests of the local datacenter. The migrator can migrate

some microservices instances to the remote datacenter to ease

the burden on local datacenter. We first take microservice

potential performance gain and public network communication

cost into account and define the reward of microservice

migration. Then, we propose a minimal resource migration

strategy to migrate the microservices to pursue the goal that the

resource usage of both the application and the remote resource

reservation is minimized.

A. Definition of the Migration Reward

Through the preliminary evaluation, we derive the migration

reward following two guidelines:

(1) Migrating the microservice with higher potential perfor-
mance gain is potential to improve the overall performance.
When the excessive workload comes, the local datacenter will

be short of different resources, e.g., CPU or LLC. Differ-

ent microservices have different sensitivities to the resource

shortage because of diverse resource demand characteristics,

resulting in different performance gains after migrating to the

remote datacenters with sufficient resources. Prior works have

shown that the microservices with higher latency and latency

variability exhibit higher potential to improve the overall

performance [33], [41]. Therefore, for each microservice to

be migrated, we use the product of staged latency percentage

(relative to the total latency) and Coefficient of Variance (CV)

of the latency to derive the potential performance gain of each

microservice as follows,

Perfk = Pctk × CVk =
Lk

Ltot

× 1

Lk

√√√√ 1

n
×

n∑
i=1

(Li
k − Lk)2, (2)

where Lk and Ltot represent the average latency of microser-

vice k and overall latency of the application during the last

time interval, respectively, n is the number of queries for

microservice k in the last time interval, Li
k represents each

query’s latency, and Lk = 1
n

∑n
i=1 L

i
k.

(2) Migrating the microservice that results in less public
network communication cost is beneficial to the overall per-
formance. The network cost from the public network can harm

the QoS, and it is mainly from two aspects: the bandwidth

limitation and RTT.

329

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

Nowadays cloud giants provide the public network band-

width up to 200mbit/s [3], which is not sufficient if there

is too much traffic in the public network, leading to long

transmission time between dependant microservices. There-

fore, we derive the network cost caused by network bandwidth

limitation as the data transmission time increment for the

queries in each second after migrating microservice k as

follows,

cost bandk =
∑

(i,j)∈pub

(
dvi,j

bw pubi,j
− dvi,j

bw orii,j
) × qps (3)

where qps denotes the queries per second received, dvi,j
is the data transmission volume from microservice i to

microservice j, and bw orii,j and bw pubi,j represent the

network bandwidth usage from microservices i to j when

they communicate with each other not through and through

public network, respectively. Constraint (i, j) ∈ pub means

the data communication between microservices i and j is

through the public network after migrating the corresponding

microservice. The network bandwidth usage is determined by

the resource manager in Sections V. If multiple microservice

pairs communicate through public network and their required

bandwidth sum is higher than the highest available public

network bandwidth, they will share the total public network

bandwidth proportionally. For instance, if i transfers dvi,j to

j and x transfers dvx,y to y through public network with the

total bandwidth b, the bandwidth between i and j is calculated

by
dvi,j

dvi,j+dvx,y
×b, and the remaining part is allocated between

x and y.

On the other hand, the RTT between the datacenters in

different regions can be ranged from several milliseconds to

hundreds of milliseconds [30]. The RTT between different

geographical locations can also affect the application per-

formance. Thus, we also derive the network cost caused by

RTT as the latency increment for the query after migrating

microservice k as follows,

cost rttk = ek × rtt (4)

where rtt represents the RTT between the local and the remote

datacenters, and ek represents the number of edges (defined

in Section V-A) of the microservice application DAG that are

in the public network after migrating microservice k.

Thus, we can define the reward of migrating microservice

k as
rewardk =

Perfk

cost netk
, (5)

where
cost netk = cost bandk + cost rttk (6)

is the total network communication cost.

To measure the network communication cost, we profiled

the data transmission volume between microservices offline

(reasonable for long-running services). Moreover, the real-

time public network bandwidth and the RTT are periodi-

cally measured via monitoring tools, e.g., kubenurse [6] and

Prometheus [8].

From Eq. (5), we can see that the reward could be in-

terpreted as the the potential performance gain per unit of

Fig. 8. Minimum resource migration strategy.

network cost. Since the public network overhead needs to be

compensated with more computing resources, i.e., reducing

the serving time to compensate the data transmission time for

achieving the same QoS target, we prioritize migrating the

microservice with a higher reward. According to the reward

definition, higher reward implies that the microservice has

greater potential performance gain with the same amount of

remote resources, and smaller data communication overhead

requiring computation-based compensation.

B. Minimum Resource Migration Strategy

As it is desirable to reserve remote computing resources as

little as possible, we design a minimum resource migration

strategy, which can migrate some microservices to the remote

datacenter for alleviating the excessive loads, while minimiz-

ing the resource usage of the remote datacenter.

As shown in Fig. 8, the monitor collects the resource usage

state of local and remote datacenters periodically. When the

monitor identifies that the local datacenter faces the exces-

sive load, we first calculate the rewards of migrating each

microservice based on Eq. (5), as shown in the steps of �-

�. Each time, we migrate the microservice with the highest

reward, and then update other microservices’ rewards again

because of the change of microservice placement in both the

local and remote datacenters, as shown in the steps of �-�.

The migration decisions are iteratively made until the local

resources are sufficient to afford the remaining microservices.

Each microservice’s resource usage is determined by the

resource manager in Section V. After the migration process,

we use the BO-based resource manager in Section V to adjust

the resource quotas of each microservice again, to minimize

the resource usage while guaranteeing the QoS.

When the degree of excessive load reduces, the monitor can

be aware that the local datacenter may have surplus resources

to accommodate more microservices locally. To minimize

the remote resource reservation, some microservices could

be migrated back to the local datacenter. ELIS uses a lazy

migration back strategy to eliminate Ping-Pong microservice

migrations. Only when the load of the entire service decreases

to a certain extent (e.g., 90% of the maximum local achievable

throughput) and stabilizes for a period (e.g., 10 minutes),

we migrate back some microservices. The migration order is

the reverse order of the one from the local datacenter to the

330

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

SN-low
SN-high

MS-low
MS-high

HR-low
HR-high

N
or

m
al

iz
ed

 9
9%

-i
le

L

at
en

cy

ELIS Nautilus

Fig. 9. The 99%-ile latency of benchmarks with ELIS and Nautilus.

remote datacenter. Take the microservices of HR benchmark

as an example, if the migration order from local to remote is

”reserve”, ”profile”, and ”frontend”, the migration back order

will be ”frontend”, ”profile”, and ”reserve”. The process of

migrating back is terminated until the local datacenter cannot

afford any other microservices in the remote datacenter or all

the microservices have been migrated back.

VII. EVALUATION

In this section, we report our performance evaluation on the

effectiveness of efficiency of ELIS for minimizing the total and

remote reserved resource usage of microservice applications,

as well as the achieved QoS and throughput.

A. Evaluation Setup

If not specifically pointed out, we use the experimental

configurations and testing benchmarks in Table I for our

experiments. ELIS does not depend on any specific software

and hardware, and can be easily set up on the local and

remote datacenters. In our experiments, we use load generator

wrk2 [9] to generate different loads (queries per second)

to the user-facing application. The performance statistics are

collected from Jaeger [5] during each time interval, and ELIS

uses the statistics to make the next scheduling decision.

We compare ELIS with a state-of-the-art microservice de-

ployment framework Nautilus [17]. We adapt Nautilus to

the local and remote datacenter environment with excessive

loads. Specifically, we implement the microservice migrator

of Nautilus that migrates microservices based on the load

of the nodes. Since Nautilus’s resource manager takes all

microservices’ configurations as input for its reinforcement

learning agent, it has the scalability issue and large training

overhead in our local and remote environment with excessive

loads. Therefore, for fair comparisons, we use our BO-based

resource manager for Nautilus.

Moreover, to show the effectiveness of our resource manager

for a local datacenter with limited local resources, we compare

ELIS with FIRM [33] that only tunes the resource allocation of

the microservices. As FIRM assumes unlimited resources, we

adapt FIRM by: (1) finding the critical path, (2) determining

the critical microservices, and (3) increasing their resources to

find the optimal resource allocations. The optimal allocation

is determined in a brute force way.

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

SN-low
SN-high

MS-low
MS-high

HR-low
HR-high

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge CPU MEM LLC Bandwidth

Fig. 10. The normalized total resource usage of ELIS to Nautilus.

0x

0.2x

0.4x

0.6x

0.8x

1x

SN-low
SN-high

MS-low
MS-high

HR-low
HR-high

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge CPU MEM LLC Bandwidth

Fig. 11. The normalized remote resource reservation of ELIS to Nautilus.

B. Minimizing the Resource Usage while Guaranteeing QoS

In this subsection, we compare ELIS with Nautilus in

minimizing the resource usage while guaranteeing the QoS,

when the local resources cannot afford the excessive loads.

The resource usage includes the overall resource usage of the

application and the resource usage in the remote datacenter.

Fig. 9 shows the 99%-ile latency of the benchmarks in 6

scenarios with excessive loads (3 benchmarks under low ex-

cessive load and high excessive load). The low/high excessive

load is defined to be 1.2X and 2X of the peak supported

load of the local datacenter with ELIS. As ELIS and Nautilus

both migrate some microservices to the remote datacenter to

alleviate the resource insufficiency of local datacenter with

excessive loads, both of them are able to guarantee the QoS.

Fig. 10 shows the total resource usage of the benchmarks

in different load levels. In this figure, we show the four

kinds of resource usage of ELIS, i.e., CPU, MEM, LLC, and

network bandwidth, and each kind of resource is normalized

to the usage amount of Nautilus. We can observe that the

resource usage with ELIS is smaller than the resource usage

with Nautilus for all the three benchmarks. Compared with

Nautilus, ELIS reduces the CPU usage, MEM usage, LLC

usage, and the network bandwidth usage by 15.7%, 11.0%,

13.4%, and 12.4%, respectively.

In addition, Fig. 11 shows the resource usage in the remote

datacenter with ELIS normalized to resource usage in the

remote datacenter with Nautilus. Observed from this figure,

the CPU, memory, LLC, and network bandwidth usage in

the remote datacenter is reduced by 49.8%, 59.4%,62.4%,

and 60.8%, respectively. Since the resources in the local

datacenter are packet periodic, while the resources in the

remote datacenter are used on demand when local resources

331

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

0

3

6

9

12

15

front
end geo profi

le rate
recom

mend reser
ve searc

h user

C
P
U
C
or
e
U
sa
ge ELIS Nautilus

Fig. 12. CPU usage of all microservices with Nautilus and ELIS of HR
benchmark in high excessive load.

0

0.07

0.14

0.21

0.28

0.35

0.42

frontend geo
profile rate

recommend
reserve

search user

P
er

fo
rm

an
ce

 G
ai

ns highest

lowest

Fig. 13. Potential performance gains
of microserives at high excessive
load of HR benchmark.

Fig. 14. Microservice migration order
of ELIS and Nautilus for HR bench-
mark at high excessive load.

are insufficient, minimizing the resource usage in the remote

datacenter can reduce the cost of cloud service providers

during the excessive load time.

We also build ELIS with two Cloud Elastic Servers [2] in

two different regions of Alibaba Cloud. The two cloud servers

represent the local and remote datecenters, respectively. The

local/remote datacenters have 24/48GB memory capacity, and

Intel(R) Xeon(R) Platinum 8369B CPU @ 2.9GHz with 12/24

logical cores, respectively. The public network peak bandwidth

of the two servers are 200mbit/s, and the RTT between them

is about 10ms. Since LLC cannot be adjusted in the cloud

virtual machines, we only adjust CPU, memory, and network

bandwidth in this experiment. We test the HR benchmark

with the same two qps of Fig. 9, and the results show that:

Compared with Nautilus, ELIS reduces the CPU usage, MEM

usage, and the network bandwidth usage by 19.6%, 7.2%, and

15.7%, respectively. Moreover, the CPU, memory, and network

bandwidth usage in the remote datacenter is reduced by 34.4%,

42.2%, and 54.9%, respectively.

ELIS reduces the overall resource usage and resource usage
of the remote datacenter compared with Nautilus.

C. Diving into the Microserivice Migrator

In this subsection, we use an experiment with the benchmark

HR at a high excessive load to better understand the reasons

that ELIS reduces the resource usage compared with Nautilus.

Fig. 12 shows the CPU cores allocated to each microservice

of HR at the high excessive load.

As observed, ELIS reduces the resource usage of almost

all the microservices. Two main reasons result in the resource

reduction. Firstly, ELIS comprehensively considers the data

transmission volume, network bandwidth limitation, and the

Round-Trip Time (RTT) when deploying the microservices,

while Nautilus only considers the data transmission volume.

This leads to better optimization of the network cost. As the

network cost can cause longer data transmission time, less

computing time is acquired to achieve the QoS, so that Nau-

tilus requires more CPU resources than ELIS. Secondly, ELIS

prioritizes migrating the microservices with greater potential

performance gain. Under the same quota of remote resources,

ELIS’s migrated microservices can reduce more latency than

Nautilus. While Nautilus does not take potential performance

gain into account, it requires more resources to achieve the

same QoS target with ELIS.

Corresponding to Fig. 12, Fig. 13 shows the potential perfor-

mance gain (calculated by Eq. (2)) of all the microservices.The

results show that reserve microservice has the largest value and

profile is the second largest, while user and recommend have

the smallest values. Fig. 14 shows the migration order of ELIS

and Nautilus during excessive load time, respectively. We can

observe that ELIS prioritizes migrating the microservices with

greater potential performance gains, allowing the application

to better reduce overall latency, even though these microser-

vices take up some remote resources. Later, for the joint

consideration of network cost and potential performance gain,

ELIS migrates a few other microservices and then restores to

the QoS target.

On the contrary, Nautilus prefers to migrate the microser-

vices with the least amount of data transmission (shown in

Fig. 5), i.e., user, recommendation, and geo. However, these

microservices provide little performance gains. They use heavy

remote resources but only reduce little overall latency. Nautilus

then has to migrate other microservices until the microservices

with higher potential performance gains (i.e., most of the

microservices ELIS migrates at the beginning), and finally

restores the QoS target.

ELIS avoids migrating the redundant microservices with
little potential performance gains to the remote datacenters,
so that can reduce the remote resource reservation.

D. Effectiveness of the Resource Manager

The resource manager monitors load and latency changes,

and adjusts the resource allocations for the microservices. In

this subsection, we compare ELIS’s resource manager with

FIRM, to verify the effectiveness of ELIS’s resource manager

on local resource utilization efficiency.

In this experiment, we deploy all the microservices in

the local datacenter, then assign the same initial resource

configurations to all the microservices of ELIS and FIRM, and

compare them at normal and peak loads, respectively. Normal

load refers to the qps that local resources can easily support,

and peak load refers to the maximum qps that ELIS supports

with the local datacenter.

Fig. 15 shows the 99%-ile latencies of ELIS and FIRM for

3 benchmarks in 6 scenarios (each benchmark has the normal

and peak load scenarios). As observed, ELIS ensures the QoS

targets, while FIRM results in QoS violations in all the peak

load scenarios. Fig. 16 shows the supported peak load with

ELIS and FIRM for the 3 benchmarks. ELIS improves the

supported peak load by 17.1% on average.

Fig. 17 shows the resource usage of the benchmarks with

ELIS normalized to the resource usage with FIRM in all

332

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

0x

0.3x

0.6x

0.9x

1.2x

1.5x

1.8x

SN-
nor
mal
SN-
pea
k

MS
-no
rma

l

MS
-pea

k

HR
-no
rma

l

HR
-pea

k

N
or
m
al
iz
ed
99
%
-i
le

L
at
en
cy

ELIS FIRM

Fig. 15. The 99%-ile latency of
benchmarks with ELIS and FIRM.

0

800

1600

2400

3200

4000

SN MS HR

Su
pp
or
te
d
P
ea
k
L
oa
d

(q
ue
ry
/s
)

ELIS FIRM

Fig. 16. The supported peak load of
benchmarks with ELIS and FIRM.

0x

0.2x

0.4x

0.6x

0.8x

1x

1.2x

SN-normal
SN-peak

MS-normal
MS-peak

HR-normal
HR-peak

N
or

m
al

iz
ed

 R
es

ou
rc

e
U

sa
ge CPU MEM LLC Bandwidth

Fig. 17. The normalized total resource usage of ELIS to FIRM.

the scenarios. Compared with FIRM, ELIS uses much fewer

resources in the normal load and slightly fewer resources

in the peak load. The statistics results show that ELIS can

reduce CPU resource usage by 15.3% and 3.8% relative to

FIRM in the normal load and peak load, respectively, while

guaranteeing the QoS targets for all the scenarios.

The benchmarks use fewer resources with ELIS because it

allocates the microservices just-enough resources for achieving

the QoS. At the normal load, ELIS not only adjusts the

resources of the microservices with QoS violations (critical

microservices), but also recycles the redundant resources of

the other microservices. On the contrary, FIRM only identifies

the critical microservices and adjusts the resources for them.

At the peak load, ELIS recycles the resources of the non-

critical microservices and compensates them to the critical

microservices, so as to make the critical microservices have

the opportunities to acquire larger resource allocation upper

bound. FIRM only identifies and adjusts the critical mi-

croservices, but the resources for critical microservices cannot

be raised up to the optimal value (satisfying QoS) as the

remaining resources in the local datacenter are insufficient.

Fig. 18 shows the resource allocation of an example of HR
at peak local load. As observed from this figure, ELIS first

recycles the resources of geo, profile, rate and search, and

then allocates them to the critical microservices for raising

the resource quotas, so as to meet the QoS and throughput

targets. While, FIRM only identifies the critical microservices

frontend and reserve, but does not recycle the resources

of other microservices. Then, FIRM expects to successively

raise up the resources of the two critical microservices, but

the resources of local datacenter are full when it raises the

resources of frontend from 2.6 to 3 CPU cores. However, the

resources are not adjusted to the optimal values and the QoS

target is still not be achieved.

frontend geo
profile rate

recommend
reserve

search user

C
P

U
 C

or
e

U
sa

ge initial configurations ELIS FIRM

1.0 0.4

0.5

0.7
0.1 0.7

0.1

1.3

Fig. 18. The CPU allocation change with ELIS and FIRM for the HR
benchmark at peak load. The upper triangle, the lower triangle and the circle
represent the increase, decrease and unchange of CPU allocation, respectively.

ELIS ensures the QoS target of a user-facing application
by allocating each microservice “just-enough” resources. On
the contrary, some microservices may be allocated too many
resources with FIRM.

E. Overhead of ELIS

Resource manager overhead. In Section V, ELIS uses

the Bayesian Optimization algorithm to find the optimal re-

source allocations for the microservices, to make each of the

microservice acquire the ”just-enough” resources. Our results

show that the algorithm searches for the optimal configurations

for all the microservices after about 92 performance samplings.

In detail, ELIS takes about 1-2 minutes to pre-train a BO re-

source allocation model for each microservice. After deploying

the BO-based resource manager online, each prediction time is

about 30ms. Moreover, the resource adjustment order decision

is made in 10 milliseconds.

Microservice migrator overhead. In Section VI, when

ELIS is aware of the excessive load of local datacenter, we

migrate some microservices from the local datacenter to the

remote datacenter. The migration is based on the functionality

of Kubernetes. The amount of data transferred between all

microservice pairs is profiled offline in 5 seconds. Each

migration time is not more than 550ms, which includes the

migration decision overhead (about 200ms) and the cold start

overhead of the migrating microservice (about 350ms). The

migration overhead can be further reduced by integrating with

works on reducing the cost of spinning up resources [10],

[35].

VIII. CONCLUSION

In this paper, we propose ELIS to ensure the QoS of the

microservice application with excessive loads through inter-

datacenter scheduling. ELIS’ resource manager searches for

the near-optimal resource allocations for the microservices

based on the Bayesian Optimization to minimize the resource

usage while ensuring the QoS. It can allocate the just-

enough resources for microservices to maximize the achiev-

able throughput of the local datacenter. We also propose a

microservice migrator to migrate some microservices to the

remote datacenters when local resources cannot afford the

excessive loads. Considering the network cost and potential

performance gain, ELIS minimizes the overall resource usage

and the remote resource usage while ensuring the QoS. We

have practically implemented ELIS and the experiment results

show that, compared with the state-of-the-art microservice

333

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

orchestration technology towards the public network, ELIS can

effectively reduce the overall and the remote resource usage

by 13.1% and 58.1% on average, respectively.

IX. ACKNOWLEDGMENT

This work is partially sponsored by the National Nat-

ural Science Foundation of China (62022057, 61832006,

61872240), and Shanghai international science and technology

collaboration project (21510713600).

REFERENCES

[1] Adopting microservices at netflix: Lessons for architectural de-
sign. www.nginx.com/blog/microservices-at-netflix-architectural-best-
practices.

[2] Aliyun. https://www.aliyun.com/.
[3] AWS. https://aws.amazon.com/cn/.
[4] Decomposing twitter: Adventures in serviceoriented architecture.

www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-
serviceoriented-architecture.

[5] Jaeger. docs.instana.io.
[6] kubenurse. https://github.com/postfinance/kubenurse.
[7] Production-grade container orchestration. kubernetes.io.
[8] Prometheus. https://prometheus.io/.
[9] wrk2. http://github.com/giltene/wrk2.

[10] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa. Firecracker: Lightweight virtualization
for serverless applications. In 17th USENIX symposium on networked
systems design and implementation (NSDI 20), pages 419–434, 2020.

[11] AWS. Implementing microservices on aws.
docs.aws.amazon.com/whitepapers/latest/microservices-on-
aws/microservices-on-aws.html.

[12] AWS. Regions and availability zones. aws.amazon.com/about-
aws/global-infrastructure/regions az/?nc1=h ls.

[13] Baxtel. Facebook data center locations. baxtel.com/data-
centers/facebook.

[14] S. Chen, C. Delimitrou, and J. F. Martı́nez. Parties: Qos-aware resource
partitioning for multiple interactive services. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 107–120, 2019.

[15] A. Cloud. Case studies of sina weibo. www.alibabacloud.com/help/doc-
detail/193187.htm.

[16] EmptyQ. Sina weibo’s architecture evolution to respond to elas-
tic expansion. blog.emptyq.net/a?ID=00004-e7e98710-4c75-40a1-808a-
28994bed273c.

[17] K. Fu, W. Zhang, Q. Chen, D. Zeng, X. Peng, W. Zheng, and M. Guo.
Qos-aware and resource efficient microservice deployment in cloud-
edge continuum. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 932–941, 2021.

[18] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou. Sage: practical
and scalable ML-driven performance debugging in microservices. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
135–151, 2021.

[19] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, et al. An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 3–18, 2019.

[20] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. De-
limitrou. Seer: Leveraging big data to navigate the complexity of
performance debugging in cloud microservices. In Proceedings of
the twenty-fourth international conference on architectural support for
programming languages and operating systems, page 19–33, 2019.

[21] A. U. Gias, G. Casale, and M. Woodside. Atom: Model-driven autoscal-
ing for microservices. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), pages 1994–2004, 2019.

[22] GoogleCloud. Global locations - regions zones.
cloud.google.com/about/locations.

[23] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu. Gaia: Geo-distributed machine learning
approaching LAN speeds. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 629–647, 2017.

[24] Y. Huang, Y. Shi, Z. Zhong, Y. Feng, J. Cheng, J. Li, H. Fan, C. Li,
T. Guan, and J. Zhou. Yugong: Geo-distributed data and job placement at
scale. Proceedings of the VLDB Endowment, 12(12):2155–2169, 2019.

[25] C.-C. Hung, L. Golubchik, and M. Yu. Scheduling jobs across geo-
distributed datacenters. In Proceedings of the Sixth ACM Symposium on
Cloud Computing, page 111–124, 2015.

[26] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang.
Grandslam: Guaranteeing slas for jobs in microservices execution frame-
works. In Proceedings of the Fourteenth European Conference on
Computer Systems, pages 1–16, 2019.

[27] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis.
Heracles: Improving resource efficiency at scale. In Proceedings of the
42nd Annual International Symposium on Computer Architecture, pages
450–462, 2015.

[28] S. Long, W. Long, Z. Li, K. Li, Y. Xia, and Z. Tang. A game-
based approach for cost-aware task assignment with qos constraint
in collaborative edge and cloud environments. IEEE Transactions on
Parallel and Distributed Systems, 32(7):1629–1640, 2021.

[29] K. Matthews. Can your data center handle black friday and cyber
monday? www.vxchnge.com/blog/black-friday-and-cyber-monday.

[30] Microsoft. Azure network round-trip latency. docs.microsoft.com/en-
us/azure/networking/azure-network-latency.

[31] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander. Twig: Multi-
agent task management for colocated latency-critical cloud services. In
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 167–179, 2020.

[32] T. Patel and D. Tiwari. Clite: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers. In
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 193–206. IEEE, 2020.

[33] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer.
FIRM: An intelligent fine-grained resource management framework for
slo-oriented microservices. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages 805–825, 2020.

[34] R. B. Roy, T. Patel, and D. Tiwari. Satori: efficient and fair resource
partitioning by sacrificing short-term benefits for long-term gains. In
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 292–305, 2021.

[35] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini. Serverless
in the wild: Characterizing and optimizing the serverless workload at
a large cloud provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218, 2020.

[36] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimiza-
tion of machine learning algorithms. Advances in neural information
processing systems, 25, 2012.

[37] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu. Distributed
resource management across process boundaries. In Proceedings of the
2017 Symposium on Cloud Computing, page 611–623, 2017.

[38] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars. Powerchief:
Intelligent power allocation for multi-stage applications to improve
responsiveness on power constrained cmp. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, pages 133–
146, 2017.

[39] D. Yu. How does alibaba cloud power the biggest online shopping
festival? www.alibabacloud.com/blog/how-does-alibaba-cloud-power-
the-biggest-online-shopping-festival 231673.

[40] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou. Sinan: Ml-
based and qos-aware resource management for cloud microservices. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, page
167–181, 2021.

[41] L. Zhao, Y. Yang, K. Zhang, X. Zhou, T. Qiu, K. Li, and Y. Bao.
Rhythm: component-distinguishable workload deployment in datacen-
ters. In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1–17, 2020.

[42] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu, R. Gu, B. C.
Ooi, and J. Yang. Overload control for scaling wechat microservices.
In Proceedings of the ACM Symposium on Cloud Computing, page
149–161, 2018.

334

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 23,2023 at 12:57:11 UTC from IEEE Xplore. Restrictions apply.

